MOSTEK.

780 MICROCOMPUTER SYSTEMS
Reference Manual

DEXTRALOG LTD.
WHITEBIRK ESTATE
BLACKBURN
LANCS. BB1 5SN

PRELIMINARY
BASIC
MANUAL

MOSTEK BASIC

INTERIM REFERENCE MANUAL

SEPTEMBER 19738

COPYRIGHT 1978 BY MOSTEK CORPORATION

ALL RIGHTS RESERVED

PUBLISHED BY MOSTEK CORPORATION WITH THE PERMISSION OF MICROSOFT

Mostek reserves the right to make changes in specifications at any time and
without notice. The information furnished by Mostek in this publication is
believed to be accurate and reliable. However, no responsibility is assumed
by Mostek for its use; nor for any infringements of patents or other rights of
third parties resulting from its use. No license is granted under any patents

or patent rights of Mostek.

Publication no. MK79623

MOSTEK BASIC FEATURES

MOSTEK BASIC, widely known as Microsoft BASIC, is the most extensive Z-80
BASIC available. 1Its features are comparable to those of BASICs found on
minicomputers and large mainframes.

1. Direct access to CPU I/C ports (INP, OUT)

2. Ability to read or write any memory location (PEEK, POKE)

3. Matrices with up to 255 dimensions

4. Dynamic allocation and deallocation of matrices at
execution time (DIM A [I,J], ERASE A)

5, IF...THEN...ELSE and nested IF...THEN...ELSE

6. Direct (immediate) execution of statements

7. Error trapping

8. Four variable types: Integer, String, Single
Precision Floating Point (7-digits) and Double
Precision Floating Point (16-digits)

9. Full PRINT USING for formatted output (includes
asterisk fill, floating $§ sign, scientific

notation, trailing sign, comma insertion)

10. Extensive program editing facilities via EDIT line
command, RENUM, AUTO, etc.

11. Trace facilities (TRON, TROFF)

12. Ability to call up to 10 assembly language
subroutines

13. Boolean operators OR, AND, NOT, XOR, EQV, IMP
14. Sequential files with variable length records
15. Random files (record I/0)

16. Complete set of file manipulation statements:
OPEN, CLOSE, GET, PUT, KILL, NAME, etc.

17. Up to 192 files per floppy disk

COMMAND SUMMARY

Commands:

AUTO CLEAR CONT
FILES LIST LLIST
NEW NULL RENUM
SAVE SYSTEM TRON

Program Statements:

DEFNx DEFDBL DEFINT

DIM END ERASE

GOSUB GOTO IF..THEN[ELSE]
ON. ..ERROR ON. ..GOSUB ON...GOTO

REM RESUME RETURN

WAIT

Input/Output Statements:

CLOSE DATA FIELD
KILL LINEINPUT LSET
PRINT pPUT READ
Operators:

= - +

- \ MOD
OR XOR IMP

Arithmetic Functions:

ABS ATN CDBL
CSNG ERL ERR
INP INT LOG
POS RND SGN
SOR TAB USRn

String Functions:

ASC CHRS FRE
LEFTS LEN MIDS
SPACES STRINGSS STRS$

Input/Output Functions:

CvD CvI Ccvs
LOF MKD$ MKT$

DELETE

RESET
TROFF

DEFSNG
ERROR
LET
ouT
STOP

GET
NAME
RESTORE

NOT
EQV
<>

CINT
EXP
LPCS
SIN
VARPTR

HEXS
OCT$
VAL

EOF
MKS$

EDIT
MERGE
RUN
WIDTH

DEFSTR
FOR
NEXT
POKE
SWAP

INPUT
OPEN
RSET

COs
FRE
PEEK
SPC

INSTR
RIGHTS

HOW TO USE THIS MANUAL

All references in this manual to versions of Microsoft BASIC other than
the Extended Disk BASIC should be ignored. MOSTEK BASIC is equivalent
to Microsoft Extended Disk BASIC with the following exceptions:

1. The record size for Random files in MOSTEK BASIC is 124 bytes.

2. The Mostek dataset specification (see Section 1 of the
FLP-80DOS Operations Manual) is used in filename specifications
for the BASIC commands OPEN, KILL, NAME, MERGE, SAVE and RUN
as illustrated in the following examples.

Example 1. Open the Random file FILNEW on disk unit 1
using file number 2.

OPEN "R",2,"DK1:FILNEW"
Example 2. Load the program file FILOLD from disk unit O.
LOAD "FILOLD"

3. The commands MOUNT, UNLOAD and CONSOLE are not supported in
the MOSTEK BASIC. However, the RESET command may be used to
initialize newly inserted diskettes in place of the MOUNT
command .

4. The file number used in the OPEN and CLOSE statements is restricted
to an integer expression between one and six. MOSTEK BASIC allows
up to six files to be open at one time.

HOW TC USE MOSTEK BASIC

After power up or reset, the Mostek FLP-80DOS system automatically enters
the Monitor environment awaiting entry of user commands. To enter BASIC
the user simply types BASIC followed by a carriage return. BASIC then
prints its sign on message on the conseole as shown below.

MOSTEK FLP-80DOS BASIC V5.0 1978

The sign on message is followed by the number of free bytes which represent
the amount of space available for BASIC program and string variable storage.
The user may now enter BASIC commands or statements as described starting

on Page 4 of this manual. To exit BASIC and return to the FLP-80DOS Monitor
the user simply enters the SYSTEM command which reboots the operating system.
The system functions performed by the following BASIC statements are of
particular interest to the user.

RESET

The RESET command should be issued anytime a new diskette is inserted
and the user wishes to continue executing BASIC disk I/0 statements.
This guarantees that the proper sector and track maps are in memory
during file operations on the newly inserted diskette. When entering
BASIC from the Monitor the RESET command is automatically executed

by BASIC.

LPRINT and LLIST

The LPRINT and LLIST statements in BASIC output data to logical unit 5
of the FLP-80DOS operating system. Logical unit 5 is initially

defined during the operating system SYSGEN (System Generation) procedure.
Logical unit 5 is typically assigned to the system output listing

device (e.g., LP: or CP:). Prior to execution of BASIC the user may
reassign logical unit 5 to a different device (e.g., TT:) using the
MONITOR ASSIGN command {See Section 2 of FLP-80DOS Operations Manual).

CONSQCLE

The CONSOLE statement is not supported in MOSTEK BASIC, however, the
console output may be redirected during program execution using the
POKE statement. Normally the PRINT statement in BASIC outputs data
to logical unit 1 (consocle output device TT:) and the LPRINT command
outputs data to logical unit 5 which is the output listing device
(e.g., LP: or CP:). In some cases it is convenient to be able to
redirect the output from PRINT statements to the output listing
device without changing each PRINT statement toc an LPRINT statement.
In MOSTEK BASIC the POKE statement provides the mechanism for
switching the output automatically. The statement POKE 30,1
redirects the console ocutput tc logical unit 5 and the statement
POKE 30,0 returns the console output to logical unit 1.

1.

BASIC Reference Manual

Addenda, April, 1977

Page 33, sub-paragraph b:
LINE INPUT ["<prompt string>",]; <string variable name>
CHANGE TO:

LINE INPUT ["<prompt string>";] <string variable>

Page 40, Paragraph 5-3b, line 9:
The of the <integer expression> is the starting address of . . .
CHANGE TO:

The <integer expression> is the starting address of . . .

Page 41. Insert the following paragraphs between Paragraphs 3 and 4.
ADDITION:

The string returned by a call to USR with a string argument is that
string the user's routine sets up in the descriptor. Modifying [D,E] does
not affect the returned string. Therefore, the statement:

Cé=USR(A$)

results in A$ also being set to the string assigned to C$. To avoid
modifying A$ in this statement, we would use:

C$=USR (A$ +" n)

so that the user's routine modifies the descriptor of a string temporary
instead of the descriptor for AS.

A string returned by a user's routine should be completely within
the bounds of the storage area used by the original string. Increasing
a string's length in a user routine is guaranteed to cause problems.
Page 49, last paragraph, line 7:

« « . leading $§ signs, nor can negative numbers be output unless the sign
1s forced to be trailing.

CHANGE TO:

« « « leading § signs.

5.

6.

10.

BASIC Reference Manual Addenda, April, 1977
Page 2

Page 59, last line:
520 CLOSE #1
CHANGE TO:
520 CLOSE 1
Page 70, CLEAR [<expression>] explanation:

Same as CLEAR but sets string space to the value . . .
CHANGE TO:

Same as CLEAR but sets string space (see 4-1) to the value . . .
Page 70, CLOAD <string expression> explanation, second line:
« « « character of STRING expression> to be . . .
CHANGE TO:

« « o character of <STRING expression> to be . . .

Page 71:

CSAVE*<array name> 8K (cassette), Disk

CHANGE TO:

CSAVE*<array name> 8K (cassette), Extended, Disk

Page 75. Insert the following after LET and before LPRINT.

ADDITION:
LINE INPUT LINE INPUT "prompt string'; string variable name

Extended, Disk

LINE INPUT prints the prompt string on the terminal and assigns all
input from the end of the prompt string to the carriage return to
the named string variable. No other prompt is printed if the prompt
string is omitted. LINE INPUT may not be edited by Control/A.

Page 76, POKE explanation, second line:

+ « « If I is negative, address is 65535+I, . . .

CHANGE TO:

« + « If I is negative, address is 65536+I, . . .

11.

12.

13.

14,

15,

16.

17.

BASIC Reference Manual Addenda, April,

Page 3
Page 80, OCTS$:
OCT$ oCT$ (X) 8K, Extended, Disk
CHANGE TO:
OCT$ OCT$ (X) Extended, Disk
Page 81:
SPACE$ SPACES$(I) 8K, Extended, Disk
CHANGE TO:
SPACE$ SPACES (1) Extended, Disk

Page 91, line 4:

. « . Question (see Appendix E).

CHANGE TO:

« « « question (see Appendix H).

Page 95, first paragraph, line 3:

. . . For instructions on loading Disk BASIC, see Appendix E.
CHANGE TO:

. . . For instructions on loading Disk BASIC, see Appendix H.
Page 103, line 1l1:

C (in extended) retains CONSOLE function.

CHANGE TO:

C (in Extended and Disk) retains CONSOLE and all other functionms.

Page 112, Paragraph 4, Line 3:

USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 decimal.
CHANGE TO:

USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 octal.
Page 114, third paragraph, line 2:
« « « by the first character of the STRING expression>.

CHANGE TO:

1977

18.

DADLL KEeICSTENCEe Manual Aadenaa, Aprii, 1Y/7
Page 4

« « .« by the first character of the <string expression>. Note that the
program named A is saved by CSAVE'"A".

Index, line 12:
ADDITION:
NULL &« & & & ¢ o o o o o o o o o « « 72

l'

CONTENTS

Some Introductory Remarks.

Introduction to this manual

d.
b.

Conventions
Definitions

Modes of Operation
Formats

a.

b.

C.

Lines-AUTO and RENUM
REMarks
Error Messages

Editing - elementary provisions

a.
b.
c.

Correcting Single Characters
Correcting Lines
Correcting Whole Programs

Expressions and Statements

Expressions

a.
b.
c.
a.
e.
fl

Constants

Variables

Array Variables - the DIM Statement
Operators and Precedence

Logical Operations

The LET Statement

Branching and Loops

a.

. b L]
c -
d L]

Branching

1) GOTO

2) IF...THEN...[ELSE]

3) ON...GOTO

Loops — FOR and NEXT Statements
Subroutines - GOSUB and RETURN Statements
Memory Limitations

Input/Output

a.
b.
c.
d.
e.

INPUT

PRINT

DATA, READ, RESTORE
CsavE, CLOAD
Miscellaneous

1) WAIT

2) PEEK,POKE

3) OUT, INP

Page 2

3. Functions

3-1 Intrinsic Functions

3-2 User-Defined Functions - the DEF Statement
3-2 Errors

4. Strings

4-1 String Data

4-2 String Operations

a. Comparison Operators
b. String Expressions
c. Input/Output

4-3 String Functions

. Extended Versions
1 Extended Statements
2 Extended Operators
3 Extended Functions
-4 The EDIT Command
5 PRINT USING Statement
6 Disk File Operations

. Lists and Directories
1 Commands
2 Statements

3 Intrinsic Functions
-4 Special Characters

5 Error Messages

6 Peserved Words

Appendices

A. ASCII CHaracter Codes

C. Speed and Space Hints

D. Mathematical Functions

G. Converting BASIC Programs Not Written for the Altair Computer

Page 3

January,

1977 Page 4§

. SOME INTRCDUCTORY REMARKS

—

1-1 Introduction to this Manual.

a. Conventions. For the sake of simplicity, some
conventions will be followed in discussing the features of
the Altair BASIC language. ‘

1. Words printed in capital letters must be written exactly
as shown, These are mostly names of instructions and
commands.

2. Items enclcsed in angle brackets (<>) must be supplied
as explained in the text. Items in square brackets ({]) are
optional. Items in both kinds of brackets, [<W>], for
example, are to be supplied if the optional feature is used.
Items followed by dots (...) may be repeated or deleted as
necessary.

3. Shift/ or Control/ .followed by a letter means the
character is typed by holding down the Shift or Control key
and typing the indicated letter.

4. All indicated punctuation must be supplied.

b. Definitions. Some terms which will become
important are as follows:

Alphanumeric character: all letters and numerals taken
together are called alphanumeric characters.

Carriage Return: Refers both to the key on the
terminal which causes the carriace, print head or cursor to
move to the beginning of the next line and to the command
that the carriage return key issues which terminates a BASIC
line.

Command Level: After Altair BASIC prints OK, it is at
the command level. This means 1t 1s ready to accept
commands.

Commands and Statements: Instructions in Altzir BASIC
are locsely divided into two <classes, Commands and
Statements. Commands are instructions normally used only in
direct mode (see Modes of Overation, section 1-2). Some
commands, such as CONTymay only be used in direct mode since
thev have no meaning as program statements. Some commands,
such as DELETE, are not normally used as program statements
because they <cause a return ¢to command level. But most
commands will find occasional wuse as prodaram statements.
Statements are instructions that are normally wused in
indirect mode. Some statements, such as DEF, may only be
used in indirect mode.

January, 1977 Page S

Edit: The process of deleting, adding and substituting
lines in "a program and that of preparing data for output
according to a predetermined format will both be referred to
as “editing.” The particular meaning in use will be ciear
from the context.

Integer Expression: An expression whose value 1is
truncated...to an integer. The components of the expression
need not be of integer type.

Reserved Words: Some words are reserved by BASIC for
use as statements and commands. These are called reserved
words and they may not be used in variable or function
names.

Special Characters: some characters appear differently
on different terminals. Some of the most important of these
are the following:

(caret) appears on some terminals as ’ (up-arrow)
~s (tilde) does not aprear on some terminals and prints
as a blank
_ (underline) appears on some terminals as -e-(back-arrow).

String Literal: A string of characters enclosed by
quotation marks (") which is to be input or output exactly
as it appears. The quotation marks are not part of the
string 1literal, nor may a string literal contain quotation
marks. (“"BI, THERE""is not legal.)

Type: While the actual device used to enter
information into the computer differs from system to system,
this manual will use the word "tyve" to refer to the process
of entry. The user tyves, the computer prints. Type also
refers to the classifications of numbers and strings.

1-2 Modes of Overation.

Altair BASIC provides for operation of the computer in
two different modes. In the direct mode, the statements or
commands are executed as they are entered into the computer.
Results of arithmetic and logical overations are displaved
and stored for later use, but the instructions themselves
are lost after execution. This mode is useful for debugging
and for using Altair BASIC in a "calculator” mode for gquick
computations which do not justify the design and coding of
complete programs.

In the indirect mode, the computer executes
instructions from a program stored in memory. Program lines
are entered into memory if they are preceded by a line
number. Execution of the program is initiated by the RUN

January,

1977 Page 6

In the indirect mode, the computer executes
instructicns from a program stored in memory. Program lines
are entered into memory if they are preceded by a line
number. Exaecution o¢f the program is initiated by the RUN

commands.

1-3 Formats.

a. Lines. The line is the fundamental unit of an
Altair BASIC program. The format for an Altair BASIC line
is as follows:

nnnnn <BASIC statement>[:<BASIC statement>...]

Each Altair BASIC line begins with a number. The number
corresponds to the address of the line in memory and
indicates the order in which the statements in the line will
be executed in the program. It also provides £for branching
linkages and for editing. Line numbers must be in the range
@ to 65529. A good programming practice is to use an
increment of 5 or 18 between successive 1line numbers to
allow for insertions.

1) Line numbers may be generated automatically in the
Extended and Disk versions of Altair BASIC by use of the
AUTO and RENUM commands. The AUTO command provides for
autcmatic insertion of line numbers when entering program
lines. The format of the AUTO command is as follows:

AUTO[<initial line>[,(<increment>]]
Example;

AUTO 196,10

169 INPUT X,Y

119 PRINT SQR(X"2+Y"2)

120 °C

OK

AUTO will number every input line until Control/C is typed.
If the <initial line> is omitted, it is assumed to be 10 and
an increment of 1@ is assumed if <increment> is omitted. IEZ
the <initial 1line> is followed by a comma but no increment
is specified, the increment last used in an AUTO statement
is assumed.

If AUTO generates a line number that already exists in
the program currently in memory, it prints the number
followed by an asterisk. This is to warn the user that any
input will replace the existing line.

Januarcy,

I NN raye

2) The RENUM command allows program lines to be "spread
out" so that a new line or lines may be inserted between
existing lines. The format of the RENUM .command is as
follows:

RENUM [<NN> [<MM>[,<II>]]]

where NN is the new number of the £first 1line to be
resequenced. If omitted, NN is assumed to be 1l0. Lines
less than MM will not be renumbered. If MM is omitted, the
whole program will be resequenced. II is the increment
between the lines to be resequenced. If II is omitted, it
is assumed to be 18. Examples:

RENUM Renumbers the whole program to start at line
19 with an increment of 18 between the new line numbers.

RENUM 104d,,100 Renumbers the whole program to start
at line 190 with an increment of 130.

RENUM 6020,5000,1000 Renumbers the lines from 5000
up so they start at 6808 with an increment of 1040.

NOTE

RENUM cannot be used to change the order of program
lines (for example, RENUM 15,30 when the program has
three lines numbered 10, 20 and 30) nor to create
line numbers greater than 65529. An ILLEGAL
PUNCTION CALL error will result.

All line numbers appearing after a GOTO, GOSUB, THEN,
OM...GOTO, ON...GOSUB and ERL<relational operator> will be
properly changed by RENUM to reference the new line numbers.
If a line number appears after one of the statements above
but does not exist in the program, the message "UNDEFINED
LINE XXXXX 1IN YYYYY" will be printed. This line reference
(XXXXX) will not be changed by RENUM, but line number YYYYY
may be changed.

3) In the Extended and Disk versions, the current line
number may be designated by a period (.) anywhere a line
number reference is required. This is particularly wuseful
in the use of the EDIT command. See section 5-4.

4) Following the 1line number, one or more BASIC
statements are written. The first word of a statement
identifies the operations to be performed. The 1list of
arguments which follows the identifying word serves several
purposes. It can contain (or refer symbolically to) the

’

January, 1977 Page 8

data which is to be operated upon by the statement. In some

important instructions, the operation to be per formed
depends upon conditions or options specified in the list.

Each type of statement will be considered in detail 1in
sections 2, 3 and 4.

More than one statement can be written on one 1line if
they are separated by colons (:). Any number of statements
can be joined this way provided that the 1line is no more
than 72 characters 1long in the 4K anéd 8K versions, or 255
characters in the Extended and Disk versions. In the
Extended and Disk versions, lines may be broken with the
LINE FEED key. Example:

108 IF X<Y¥+37<line feed>
THEN 5 <line feed>
ELSE PRINT(X)<carriage return>

The line is shown broken into three lines, but it 1is input
as one BASIC line.

b. REMarks. In many cases, a program c¢an be more
easily understood if it contains remarks and explanations as
well as the statements of the program proper. In Altair
BASIC, the REM statement allows such comments to be included
without affecting execution of the program. The format of
the REM statement is as follows:

REM <remarks>

A REM statement is not executed by BASIC, but branching
statements may link into it. REM statements are terminated
by the carriage return or the end of the line but not by a

colon. Example:

160 REM DO THIS LOQP:FQOR I=1TOl@ ~the FOR statement
will not be exacuted
181 FOR I=]1 TO 1@: REM DO THIS LOOP -this FOR statement will

be executed.

In Extended and Disk versions, remarks may be added to the
end of a program line separated from the rest of the line by
a single quotation mark ('). BEverything after the single
quote will be ignored.

¢. Errors. When the BASIC interpreter detects an
error that will <cause the program to be terminated, it
prints an error message. The error message formats in

Altair BASIC are as follows:

Direct statement ?XX ERROR

SaTBACY, LD Page 9

Indirect statement ?XX ERROR IN nnnnn

XX is the error code or message (see section 6-5 for a 1list
of error codes and messages) and nnnnn is the line number

where the error occurred. Each statement has its own
particular possible errors in addition to the general errors
in syntax. These errors will be discussed in the

description of the individual statements.

1-4 Editing - elementary provisions.

Editing features are provided in Altair BASIC so that
mistakes can be corrected and features can be added and
deleted without affecting the remainder of the program. If
necessary, the whole program may be deleted. Extended and
Disk Altair BASIC have expanded editing facilities which
will be discussed in section 5.

a. Correcting single “characters. If an incorrect
character is detected in a line as it is being typed, it can
be corrected immediately with the backarrow (underline on
some terminals) or ,except in 4K, the RUBOUT key. Each
stroke of the key deletes the immediately preceding
character. If there is no preceding character, a carriage
return is issued and a new line is begun. Once the unwanted
characters are removed, they can be replaced simply by
typing the rest of the line as desired.

When RUBOUT is typed, a backslash (\) 1is printed and
then the <character to be deleted. Each successive RUBOUT
prints the next character to be deleted. Typing a new
character prints another backslash and the new character.
All characters between the backslashes are deleted.

Exanple:

109 X=\=X\¥=10 Typing two RUBOUTS deleted the '='
and 'X' which weras subsequently
replaced by Y= .

b. correcting lines. A line being typed may be
deleted by typing an at-sign (@) instead of typing a
carriage return. A carriage return is printed automatically
after the line is deleted. Except in 4K, typing Control/U
has the same effect.

In the Extended and Disk versions, typing Control/A
instead of the carriage return will allow all the features
cf the EDIT command (except the A command) to be used on the

January, 1977 Page 10

line currently being typed. See section 5-4.

c. correcting whole programs. The NEW command causes
the entire current program and all variables to be deleted.
NEW is generally used to clear memory space praparatory to
entering a new program.

2. STATEMENTS AND EXPRESSIONS..

2-1. Expressions.

The simplest BASIC expressions are single constants,
variables and function calls.

a. Constants. Altair BASIC accepts integers or
floating point real numbers as constants. All but the 4K
version of Altair BASIC accept string constants as well,
See section 4-1. Some examples of acceptable numeric

constants f£o5llow:

123
3.141
p.0436
1.25E+85

Data input from the terminal or numeric constants in a
_ program may have any number of digits up to the length of a
line (see section 1-3a). In 4K and 8K Altair BASIC,
however, only the first 7 digits of a number are significant
and the seventh digit is rounded up. Therefore, the command

PRINT 1.234567890123
produces the following output:

1.23457
OK

In Extended and Disk versions of Altair BASIC, double
precision <format allows 17 significant digits with the 17th
digit rounded up.

The format of a printed number is determined by the
following rules:

1. If the number is negative, a minus sign (=) is printed
to the left of the number. If the number is positive, a
space is printed.

January, 1977 Page 11

2. If the absolute value of the number is an integer in
the range 8 to 999999, it is printed as an integer.

3. If the absolute value of the number is greater than or

equal to .81 and less than or equal to 999999, it is
printed in fixed point notation with no exponent.

4. In Extended and Disk versions, fixed point values up to
9999999999999999 arte possible.

5. If the number does not fall into categories 2, 3 or ¢4,
scientific notation is used.

The formats of scientific notation are as follows:

SX.XXXXXESTT single precision
SX . AXXXAXXXXXXXXXXDSTT double precision

where S stands for the signs of the mantissa and the
exponent (they need not be the same, of course), X for the
digits of the mantissa and T for the digits of the exponent.
E and D may be read “...times ten to the power...."
Non-significant zeros are suppressed in the mantissa, but
two digits are always printed in the exponent. The sign
convention in rule 1 is followed for the mantissa. The
exponent must be in the range -38 to +38. The largest
number that may be represented in ‘Altair BASIC is
1.70141E38, the smallest positive number is 2.9387E-38. The
following are examples of numbers as input and as output by
Altair BASIC:

Number Altair BASIC Output
+1 1

-1 -1

6523 6523

1E29 1E20
-12.34567E-18 -1.23456E-09
1.234567E-7 1.23457E-07
10000060 1E+d6

.1 .1

.01 .01

.0006123 1.23E-084
-25.4640 -25.46

The Extended and Disk versions of Altair BASIC allow
numbers to be represented in integer, single precision or
double precision form. The type of a number constant 1is
determined accucding to the following rules:

January,

1977 Page 12

1. A constant with more than 7 digits or a 'D' instead of
'BE' in the exponent is double precisioa.

2. A constant outside the range -32768 to 32767 with 7 or
fewer digits and a decimal point or with an 'E' exponent
is single precision.

3. A constant in the range -32768 to 32767 and no decimal
point is integer.

4. A constant followed by an exclamation point (!) 1is
single precision; a constant followed by a pound sign
() is double precision.

Two additional types of constants are allowed in
Extended and Disk versions of Altair BASIC. Hexadecimal
(base sixteen) constants may be explicitly designated by the
symbol &H preceding the number. The constant may not
contain any characters other than the digits @8 - 9 or
letters A - F, or a SYNTAX ERROR will occur. Octal
constants may be designated either by &0 or just the & sign.

In all formats, a space is printed after the number.
In all but the 4K version, Altair BASIC checks to see if the
entire number will fit on the «current line. If not, it
issues a carriage return and prints the whole number on the
next line.

b. Variables

1) A variable represents symbolically any number which
is assigned to it. The value of a variable may be assigned
explicitly by the programmer or may be assigned as the
result of <calculations in a program. Before a variable is
assigned a value, its value is assumed to be zero. 1In 4X ,
a variable name consists of one or two characters. The
first character is any letter. The second character must be
a numeral. In other versions of Altair BASIC, the variable
name may be any length, but any alphanumeric characters
after the first two are ignored. The first character must
he a letter. No reserved words may appear as variable names
or within wvariable names. The following are examples of
legal and illegal Altair BASIC variables:

Legal Illegal
In 4K and 8K Altair BASIC:
A $A (first character must
be alphabetic.)
Z1l Z21A (variable name is too

long for 4K)
Other versions:

January, 1977 Page 13

TP TO (variable names cannot
be reserved words)

PSTGS

COUNT RGOTO (variable names can-
not contain reserved
words.)

In all but 4K Altair BASIC, a wvariable may also
represent a string. Use of this feature is discussed in
section 4,

2) Extended and Disk versions of Altair BASIC allow the
use of Integer and Double Precision variables as well as
Single Precision and Strings. The type of a variable may be
explicitly declared in Extended and Disk versions of Altair
BASIC by using one of the symbols in the table below as the
last character of the variable name.

Type Symbol
Strings (@ to 255 characters) $
Integers (-32768 to 32767) L
Single Precision (up to 7 digits, exponent between
-38 and +38) !
Double Precision (up to 16 digits, exponent between
-38 and +38) $

Internally, BASIC handles all numbers in binary. Therefore,
some 8 digit single precision and 17 digit double precision
numbers may bte handled correctly If no type 1is explicitly
declared, type i3 determined by the first letter of the
variable name according to the type table. The table of
types may be modified with the following statements.

DEFINT r Integer
DEFSTR r String
DEFSNG ¢ Single Precisicen
DEFDBL r Double Precision

where r is a letter or range of letters to be designated.
Examples:

15 DEFINT I-N Variable names beginning with the let-
ters I-N are to be of integer type.

20 DEFDBL D Variable names beginning with D are to
ve of double precision type.

If no type definition statements are encountered, BASIC
proceeds as if it had executed a DEFSNG A-Z statement.

January, 1977 Page 14

3) Integer variables should be used wherever possible
since they take the 1least amount of space in memory and
integer arithmetic is much faster than single precision
arithmetic.

Care must be exercised when single precision and double
precision numbers are mixed. Since single precision numbers
can have more significant digits than will be printed, a
double precision variable set to a single precision value
may not print the same as the single precision variable.

19 A=1.01 single precision value
20 B$=A*19:C#=CDBL(A) *10% convert to double precision
30 PRINTA;B#;C#;CDBL(A) in various ways
RUN
1.01 10.100600038146973 10.09999990463257 1.0809999990463257
OK

In order to assure that double precision numbers will print
the same as single precision, the VAL and STR$ functions
should be used. For example:

19 A=1.01
20 B#=VAL(STRS$(A)):C$=Bz*10%
38 PRINT A;B#;C#
RUN
1.01 1.61 19.1
OK

c. Array Variables. It is often advantageous to refer
to several variables by the same name. In matrix
calculations, for example, the computer handles each element
of the matrix separately, but it is convenient for the
programmer to refer to the whole matrix as a unit. For this
purpose, Altair BASIC provides subscripted variables, or
arrays. The form of an array variable is as follows:

VV(<subscript>[,<subscript>...])

where VV is a variable name and the subscripts are integer
expressions. Subscripts may be enclosed in parentheses or
square brackets. An array variable may have only one
dimension in 4K, but in all other versions of Altair BASIC
it may have as many dimensions as will fit on a single line.
The smallest subscript is zero. Examples:

A(5) The sixth element of array A. The first
element is A(9).

ARRAY (I,2*J) The address of this element in a two-
dimensional array is determined by
evaluating the expressions in parenthe-
ses at the time of the reference to the

January, 1977 Page 15

array and truncating to integers. If
I=3 and J=2.4, this refers to ARRAY(3,4).

The DIM statement allocates storage for array variables and
sets all array elements to zero. The form of the DIM
statement is as follows:

DIM VV(<subscript>[,<subscript>...])

where VV is a legal variable name. Subscript is an integer
expression which specifies the largest possible subscript
for that dimension. Each DIM statement mav apply to more
than one array variable. Some examples follow:

113 DIM A(3), D$(2,2,2)

114 DIM R2%(4), B(1l3)

115 DIM Ql(N), Z#(2+I) Arrays may be dimensioned dy-
namically during program
execution. At the time the
DIM is executed, the expression
within the parentheses is e-
valuated and the results trun-
cated to integer.

If no DIM statement has been executed before an array
variable is found in a program, BASIC assumes the variable
to have a maximum subscript of 13 (11 elements) for each
dimension 1in the reference. A BS or SUBSCRIPT OUT OF RANGE
error message will be issued if an attempt 1is made to
reference an array element which 1is outside the space
allocated in its associated DIM statement. This c¢an occur
when the wrong number of dimensions is used in an array
element reference. For example:

38 LET A(1,2,3)=X when A has been dimensioned by
19 DIM A(2,2)

A DD or REDIMENSICNED ARRAY error occurs when a DIM
statement for an array is found after that array has been
dimensioned. This often occurs when a DIM statement appears
after an array has been given its default dimension of 140.

d. Operators and Precedence. Altair BASIC provides a
full range of arithmetic and (except in 4K) 1logical
operators. The order of execution of operations 1in an
expression 1is always according to their precedence as shown
in the table below. The order can be specified explicitly
by the use of parentheses in the normal algebraic fashion.

Table of Precedence

January, 1977

Oper
Oper
same
in a
1.

2.

9.
19.
11.

12.
13.
14.

In 4
once

Page 16

ators are shown here in decreasing order of precedence.
ators listed in the same entry in the table have the
precedence and are executed in order from left to righnt
n express.ion.

Expressions enclosed in parentheses ()

* exponentiation (not in 4K). Any number to the zero
power 1s 1. Zero to a negative power causes a /@ or
DIVISION BY ZERO error.

- negation, the unary minus operator

*,/ multiplication and division

\ integer division (available in Extended and Disk
versions, see section 5-2)

MOD (available in Extended and Disk versions. See
section 5-2)

+,- addition and subtraction
relational operators
= equal
<> not equal
< less than
> greater than
<=,=< less than or equal to
=,=> greater than or equal to

(the logical operators below are not available in 4K)

NOT logical, bitwise negation

AND logical, bitwise disjunction

OR logical, bitwise conjunction

(The logical operators below are available only in
Extended and Disk versions.)

XOR logical, bitwise exclusive OR

EQV logical, bitwise equivalence

IMP logical, bitwise implication

K Altair BASIC, relational operators may be wused only
in an IF statement. In all other versions, relational

January, 1977 Page 17

operators may be wused in any expressions. Relational
expressions have the value either of True (-1) or False (9).

e. Logical Operations. Logical operators may be used
for bit manipulation and Boolean algebraic functions. The
AND, OR, NOT, XCR, EQV and IMP operators convert their
arguments into sixteen bit, signed, two's complement
integers in the range =~32768 to 32767. After the operations
are performed, the result is returned in the same form and
range. If the arguments are not in this range, an FC or
ILLEGAL FUNCTION CALL error message will be printed and
execution will be terminated. Truth tables for the 1logical
operators appear below. The operations are performed
bitwise, that is, corresponding bits of each argument are
examined and the result computed one bit at a time. In
binary operations, bit 7 is the most significant bit of a
byte and bit 8 is the least significant.

AND

X Y X AND Y

1 1l 1

1)

g 1 8

) 2 8
OR

X Y XORY

1 1 1

1) 1

@ 1l 1l

0 0 g
NOT

X NOT X

1)

0 1
XCR

X Y X XOR Y

1 1)

1l 0 1

) 1 1

0)]
EQV

X Y X EQV Y

1 1 1

1 g)

g 1 2

) @ 1
IMP

X Y X IMP Y

1 1 1

1 a]

g 1 1

/) 8 1

January, 1977 Page 18

Some examples will serve to show how the logical . operations

WOLK:

63 AND 16=16 63=binary 111111 and l6=binary 10009,
so 63 AND 16=16

15 AND 14=14 15= binary 1111 and ldi=binary 1118,
so 15 AND i4=binarv 1110=14.

-1 AND 8=8 -l=binary 1111111111111111 and 8=binary
1800, so =1 AND 8=8.

4 OR 2=6 4=binary 199 and 2=binary 18 so
4 OR 2=binary 113=46.

190 OR 190=13 binary 1819 OR'd with itself is 1410=
10,

-1 OR =-2=-1 -l=binary 1111111111111111 and -2=
1111111111111113, so -1 OR =-2=-1,

NOT 8=-1 the bit complement of sixteen zeros

is sixteen ones, which is the two's
complement representation of =1.

NOT X=-{X+1) the two's complement of any number is
the bit complement plus one.

A typical use of logical operations is 'masking', testing a
binary number for some predetermined pattern of bits. Such
numbers might come from the computer's input ports and would
then reflect the condition of some external device. Further
applications of logical cverations will be considered in the
discussion of the IF statement.

f. The LET statement. The LET statement is used to
assiagn a value to a variable. The form is as follows:

LET <VV>=<expression>

where VV is a variable name and the expression is any wvalid
Altair BASIC arithmetic or, except in 4K, logical or string
expression. Examples:

1000 LET V=X
119 LET I=I+1 the '=' sign heremeans 'is replaced

by"

The word LET in a LET statement is optional, so algebraic
equations such as:

120 V=.5* (X+2)
are legal assignment statements.

A SN or° SYNTAX ERROR message is printed when BASIC
detects incorrect form, 1illegal characters in a 1line,
incorrect punctuation or missing parentheses. An OV or
OVERFLOW error occurs when the result of a calculation is

January, 1977 Page 19

too large to be represented by Altair BASIC's number
formats. All numbers must be within the range 1lE-38 to
1.70141E38 or -1E-38 to -1.78141E38. An attempt to divide
by zero results in the /8 or DIVISION BY ZERO error message.

For a discussion of strings, string variables and
string operations, see section 4.

2-2. Branching, Loows and Subroutines.

a. Branching. 1In addition to the sequential execution
of program lines, BASIC provides for changing the order of
execution. This provision is called branching and 1is the
basis of programmed decision making and loops. The
statements in Altair BASIC which provide for branching are
the GOTO, IF...THEN and ON...GOTO statements.

1) GOTO is an unconditional branch. Its form 1is as
follows:

GOTO<mmmmm>

After the GOTO statement is executed, execution continues at
line number mmmmm.

2) IF...THEN is a conditional branch. 1Its form 1is as
follows:

IF<expression>THEN<mmmmm>

where the expression is a valid arithmetic, relational or,
except in 4K, logical expression and mmmmm is a line number.
If the expression is evaluated as non-zero, BASIC continues
at line mmmmm. Otherwise, execution resumes at the next
line after the IF...THEN statement.

An alternate form of the 1IF...THEN statement 1is as
follows:

IF<expression>THEN<statement>

where the statement 1is any Altair BASIC statement.
Examples:

19 IF A=10 THEN 40 If the expression A=10 is
true, BASIC branches to 1line 44. Otherwise,
execution proceeds at the next line.

15 IF A<B+C OR X THEN 198 The expression after IF is
evaluated and if the value of the expression |is
non-zero, the statement branches to 1line 1@@.

January,

1977 Page 24

Otherwise, execution continues on the next line.

20 IF X THEN 25 If X is not zero, the statement
branches to line 25.

390 IF X=Y THEN PRINT X 1If the expression X=Y is true
(its value is non-zero), the PRINT statement 1is
executed. Otherwise, the PRINT statement is not
executed. - In either case, exzazcution ccntinues with
the line after the If...THEN statement.

35 IF X=Y+3 GOTO 39 Eguivalent to the corresponding
IF...THEN statement, except that GOTO must be.
followed by a 1line number and not by another
statement.

Extended and Disk versions of Altair BASIC provide an
expanded IF...THEN statement of the form

IF<expression>THEN<KYY>ELSE<KZZ>

where YY and 22 are valid 1line numbers or Altair BASIC
statements. Examples:

IF X>Y THEN PRINT "GREATER" ELSE PRINT "NOT GREATER"

If the expression X>Y is true, the statement after THEN |is
executed; otherwise, the statement after ELSE is executed.

IF X=2*Y THEN 5 ELSE PRINT "ERROR"

If the expression X=2*Y is true, BASIC branches to 1line 5;
otherwise, the PRINT statement is executed. Extended and
Disk Altair BASIC allow a comma before THEN.

IF statements may be nested in the Extended and Disk
versions. Nesting is 1limited only by the length of the
line. Thus, for example:

IF X>Y THEN PRINT "GREATER" ELSE IF Y¥>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

and

IF X=Y THEN IF Y¥Y>2 THEN PRINT "X>Z" ELSE PRINT "Y¥<=Z"
ELSE PRINT "X<>Y"

are legal statements. If a line does not contain the same
number of ELSE and THEN clauses, each ELSE is matched with
the closest unmatcned THEN. Example:

IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT "A<>C"

will not print "A<>C" when A<>B.

January, 1977 Page 21

3) ON...GOTO (not in 4K) provides for another type of
conditional branch. 1Its form is as follows:

ON<expression>GOTO<list of line numbers>

After the wvalue of the expression is truncated to an
integer, say I, the statement causes BASIC to branch to the
line whose number is Ith in the list. The statement may be
followed by as many line numbers as will fit on cne line,
If I=0 or is greater than the number of lines in the list,
execution will continue at the next line after the ON...GOTO
statement. I must not be less than 2zero or greater than
255, or an FC or ILLEGAL FUNCTION CALL error will result.

b. Loops. It is often desirable to perform the same
calculations on different data or repetitively on the same
data. For this purpose, Altair BASIC provides the FOR and
NEXT statements. The form of the FOR statement is as
follows:

FOR<variable>=<X>TO<KY> [STEP <2>]

where X,Y and 2 are expressions. When the FOR statement |is
encountered for the first time, the expressions are
evaluated. The variable is set to the value of X which |is
called the initial value. BASIC then executes the
statements which follow the FOR statement in the wusual
manner. When a NEXT statement is encountered, the step I is
added to the variable which is then tested against the final
value Y. If 2, the step, is positive and the variable is
less than or egqual to the final value, or if the step is
negative and the wvariable is greater than or equal to the
final value, then BASIC branches back to the statement
immediately following the FOR statement. Otherwise,
execution proceeds with the statement following the NEXT.
If the step 1is not specified, it 1is assumed to be 1.
Examples:

1¢ FOR I=2 TO 11 The loop is executed 19 times with
the variable I taking on each in-
tegral value from 2 to 1ll.

260 FOR V=1 TO 9.3 This loop will execute 9 times un-
til V is greater than 9.3

380 FOR V=10*N TO 3.4/Z STEP SQR(R) The initial, final
and step expressions need not be
integral, but they will be eval-
vated only once, before loop-
ing begins.

40 FOR V=9 TO 1 STEP -1 This loop will be executed 9
times.

FOR...NEXT loops may be nested. That is, BASIC will execute

January,

1977 Page 22

a FOR...NEXT 1loop within the context of another loop. &n
example of two nested loops follows:

19080 FOR I=1 TO 190
1290 FOR J=1 TO I
138 PRINT A(I,J)
149 NEXT J

158 NEXT I

Line 138 will print 1 element of A for I=1, 2 for I=2 and so
on. If loops are nested, they must have different loop
variable names. The NEXT statement <for the 1inside loop
variable (J in the example) must appear before that for the
outside variable (I). Any number of levels of nesting 1is
allowed up to the limit of available memory.

The NEXT statement is of the form:
NEXT[<variable>[,<variable>...]]

where each variable is the loop variable of a FOR 1loop for
which the NEXT statement is the end point. 1In the 4K
version, the only form allowed is WEXT with one wvariable.
In all other versions, NEXT without a variable will match
the most recent FOR statement. In the case of nested loops
which have the same end point, a single NEXT statement may
be used for all of them, except in 4X. The first variable
in the list must be that of the most recent looo, the second
of the next most recent, and so cn. If BASIC encounters a
NEXT statement before 1its corresponding FOR statement has
been executed, an NF or NEXT WITHOUT FOR error message 1is
issued and execution is terminated.

c. Subroutines. If the same operation or series of
operations are to be performed in several places in a
program, storage space requirements and programming time
will be minimized by the use of subroutines. & subroutine
is a series of statements which are executed in the normal
fashion upon being @ocranchned to by a GCGOSUB statement.
Execution of the subroutine 1is terminated by the RETURN
statement which branches back to the statement after the
most recent GOSUB. The format ¢f the GOSUB statement is as
follows:

GOSUB<line number>

where the line number is that of the first 1line of the
subroutine, A subroutine may be called from more than one
place in a program, and a subroutine may contain a call to
another subroutine. Such subroutine nesting is limited only
by available memory.

January, 1977 Page 23

Except in the 4K version, subroutines may be branched
to conditionally by use of the ON...GOSUB statement, whose
form is as follows:

ON <expression> GOSUB <list of line numbers>

The execution is the same as ON...GOTO except that the 1line
numbers are those of the <£first 1lines <¢f subroutines.
Execution continues at the next statement after the
ON...GOSUB upon return Irom one of the subroutines.

d. OUT OF MEMORY errors. While nesting in 1loops,
subroutines and branching is not limited by BASIC, memory
size 1limitations restrict the size and complexity of
programs. The OM or COUT OF MEMORY error message is issued
when a program requires more memory than is available. See
Appendix C for an explanation of the amount of memory
required to run programs.

2-3. Input/Output

a. INPUT. The INPUT statement causes data input to be
requested from the terminal. The format of the INPUT
statement is as follows:

INPUT<1list of variables>

The effect of the INPUT statement is to cause the values
typed on the terminal to be assigned to the variables in the
list. When an INPUT statement is executed, a question mark
(?) 1is printed on the terminal signalling a reguest for
information. The operator types the required numbers or
strings (or, in 4K, expressions) separated by commas and
types a carriage return. If the data entered 1is invalid
(strings were entered when numbers were reguested, etc.)
BASIC orints 'REDO FROM START?' and waits for the «correct
data to be entered. If more data was reguested by the INPUT
statement than was typed, 2?? 1is printed on the terminal and
execution awaits the needed data. 1If more data was typed
than was requested, the warning 'EXTRA IGNORED' 1is printed
and execution proceeds. After all the requested data is
input, execution continues normally at the statement
following the INPUT. Except in 4X, an optional prompt
string may be added to an INPUT statement.

INPUT["<prompt string>";]<variable list>

Execution of the statement causes the prompt string to be
printed ©Dbefore the gquestion mark. Then all operations
proceed as above. The prompt string must be enclosed in
double quotation marks (") and must be separated from the

January,

1977 Page 24

variable list by a semicolon (;). Example:

100 INPUT "WHAT'S THE VALUE";X,Y causes the following
output:

WHAT'S THE VALUE?

The requested values of X and Y are typed after the ?
Except 1in 4K, a carriage return in response to an INPUT
statement will cause execution to continue with the wvalues
of the variables in the variable list unchanged. 1In 4K, a
SN error results.

b. PRINT. The PRINT statement causes the terminal to
print data. The simplest PRINT statement is:

PRINT

which prints a carriage return. The effect is to skip a
line. The more usual PRINT statement has the following
form:

PRINT<1list of expressions>

which causes the values of the expressions in the list to be
printed. String literals may be printed if they are
enclosed in double quotation marks (").

The position of printing |is determined by the
punctuation used to separate the entries in the list.
Altair BASIC divides the printing 1line 1into zones of 14

spaces each. A comma causes printing of the value c¢f the
next expression to begin at the beginning of the next 14
column =zone. A semicolon (;) causes the next printing to

begin immediately after the last value printed. If a comma
or semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line according
to the conditions above. Otherwise, a carriage return is
printed.

c. DATA, READ, RESTORE

1) the DATA statement. Numerical or string data needed
in a program may be written into the program statements
themselves, input from peripheral devices or read from DATA
statements. The format of the DATA statement is as follows:

DATA<list>

where the entries in the 1list are numerical or string
constants separated by commas. In 4K, expressions may also

Janruary, 1977 Page 25

appear in the list. The effect of the statement is to store
the list of values in memory in coded form for access by the
READ statement. Examples:

19 paTa 1,2,-1E3,.94

29 DATA " LOQ", MITS Leading and trailing spaces in
string values are suppressed unless the string is
enclosed by double quotation marks.

2) The READ statement. The .data stored by DATA
statements 1is accessed by READ statements which have the
following form:

READ<Clist of variables>

where the entries in the list are variable names separated
by commas. The effect of the READ statement is to assign
the values in the DATA lists to the correspending variables
in the READ statement list. This is done one by one from
left to right until the READ list is exhausted. If there
are more names 1in the READ list than values in the DATA
lists, an OD or QUT CF DATA error message is issued. If
there ar=2 more wvalues stored in DATA statements than are
read by a RIAD statement, the next READ statement to be
executed will begin with the next unread DATA list entry. A
single READ statement may access more than one DATA
statement, and more than one READ statement may access the
data in a single DATA statement.

An SN or SYNTAX ERROR message can result from an
improperly formatted DATA list. 1In 4K Altair BASIC, such an
error wmessade will refer to the READ statement which
attempted to access the incorrect data. In other versions,
the line number in the error message will refer &to the
actual 1ine of the DATA statement in which the error
occurred.

3) RESTORE statement. After the RESTORE statement is
executed, the next piece of data accessed by a READ
statement will be the first entry of the first DATA list in
the program. This allows re-READing the data.

d. CSAVEing and CLOADing Arrays (3X cassette, Extended
and Disk wversions only). Numeric arrays may be saved on
cassette or loaded from cassette using CSAVE* and CLOAD* The
formats of the statements are:

CSAVE*<array name>

and

January,

1977 Page 26

CLOAD*<array name>

The array is written out in binary with four octal 218
header bytes to indicate the start of data. These bytes are

searched for when CLOADing the array. The number of bytes
written is four plus:

8*<number of elements> for a double precision array
4*<number of elements> for a single precision array
2*<number of elements> for an integer array

When an array is written out or read in, the elements of the
array are written out with the leftmost subscript wvarying
most quickly, the next leftmost second, etc:

DIM A(18)
CSAVE*A

writes out A(8),A(l),...A(18)

DIM A(10,180)
CSAVE*A

writes out A(@,0), A(l,0)...A(16,0),A(10,1)...A(10,10)

Using this fact, it is possible to write out an array as a
two dimensional array and read it back in as a single
dimensional array, etc.

NOTE

Writing out a double precision array and reading it
back in as a single precision or integer array is
not recommended. Useless values will undoubtedly be

returned.

e. Miscellaneous Input/Output

1) WAIT (not in 4K). The status of input ports can be
monitored by the WAIT command which has the following
format:

WAIT<KI,JI>[,<K>]
where I is the number of the port being monitored and J and

K are integer expressions. The port status is exclusive ORd
with ¥ and the result 1is ANDed with J. Execution is

January, 1977 Page 27

suspended until a non-zero value results. J picks the bits
of port I to be tested and execution 1is suspended until
those bits differ from the corresponding bits of K.
Execution resumes at the next statement after the WAIT. If
K is omitted, it is assumed to be zaro. I, J and K nust be
in the range # to 255. Examples:

WAIT 20,6 Execution stops until either bit 1 or bit
2 of port 20 are equal to 1. (Bit @ is
least significant bit, 7 is the most sig-
nificant.) Execution resumes at the next
statement.

WAIT 18,255,7 Execution stops until any of the most significant
5 bits of port 19 are one or any of the least
significant 3 bits are zero. Execution
resumes at the next statement.

2) POKE, PEEX (not in 4K). Data may be entered into
memory in binary form with the POKE statement whose format
is as follows:

POKE <I,J>

whera I and J are integer expressions. POKE stores the byte
J into the location specified by the value of I. 1In 8K, I
must be less than 32768. 1In Extended and Disk versions, I
may be in the range @ to 65536. J must be in the range 0 to
255. In 8X, data may be POKEd into memory above location
32768 by making I a negative number. 1In that case, I is
computed by subtracting 65536 from the desired address. To
POKE data into location 45000, for example, I |is
45000-65536=-20536. Care must be taken not to POKE data
into the storage area occupied by Altair BASIC or the system
may be POKEd to death, and BASIC will have to be loaded
again.

The complementary function to PCKE is PEEK. The format
for a PEEK call is as follows:

PEEK (<I>)

where I is an integer expression specifying the address from
which a byte is read. I is chosen in the same way as in the
POKE statement. The value returned is an integer between 8
and 255. A major use of PEEK and POKE is to pass arguments
and results to and from machine language subroutines.

3)0UT, INP (not in 4K). The format of the OUT
statement is as follows:

January, 1977 Page 28

ouT <KI,J>

where I and J are integer expressions. OUT sends the byte
signified by J to output port I. I and J must be in the
range 8 to 255.

The INP function is called as follows:
INP(<I>)

INP reads a byte from port I where I is an integer
expression in the range @ to 255. Example:

20 IF INP(J)=16 THEN PRINT "ON"

3. FUNCTIONS

Altair BASIC allows functions to be referenced 1ih
mathematical function notation. The format of a function
call is as follows:

<name> (<argument>[,<argument>...])

where the name is that of a previously defined function and
the arguments are one or more expressions, separated by
commas. Only one argument is allowed in 4X and B8K.
Function calls may be components of expressions, so
statements like

10 LET T=(F*SIN(T))/P and
20 C=SQR(A"2+B"2+2*A*B*COS(T))

are legal.

3-1. Intrinsic Functions

Altair BASIC provides several frequently used functicns
which may be <called from any program without further
definition. A procedure is provided, however, whereby
unnseded functions may be deleted to save memory space. See
Appendix B. For a list of intrinsic functions, see section
6-31

3-2. User-Defined Functions (not in 4K).

January, 1977 Page 29

a. The DEF statement. The prograrmer may define
functions which are not included in the list of intrinsic
functions by means of the DEF statement. The form of the
DEF statement is as follows:

DEF<function name> (<variable list>)=<expression>

where the function name must be FN followed by a legal
variable name and the entries 1in the variable list are
‘dummy' variable names. The dummy variables represent the
argument variables or wvalues in the function call. In 8K
Altair BASIC, only one argument is allowed for a
user-defined function, but in the Extended and Disk
versions, any number of arguments is allowed. Any
expression may appear on the right side of the equation, but
it must be limited to one line. User-defined functions may
be of any type 1in Extended and Disk versions, but
user-defined string functions are not allowed in 8K If a
type 1is specified for the function, the wvalue of the
expression is forced to that type before it -is returned to
the calling statement. Examples:

19 DEF FNAVE(V,W)=(V+W)/2

11 DEF FNCONS$ (V$,WS)=RIGHTS (VS+W$,5) Returns the right
most 5 characters of the concat-
enation of V$ and WS$S.

12 DEF FNRAD(DEG)=3.14159/180*DEG When called with the
measure of an angle in degrees,

returns the radian equivalent.

A function may be redefined by executing another DEP
statement with the same name. A DEF statement must be
executed before the function it defines may be called.

b. USR. The USR function allows calls to assembly
language subroutines. See appendix E.

3-3. Errors.

An FC or ILLEGAL FUNCTION CALL error results when an
improper call is made to a function. Some places this might
occur are the following:

1. a negative array subscript. LET A(~1)=08, for example.
2. an array subscript that is too large (>32767)

3. negative or zero argument for LOG

January, 1977 Page 30

4. Negative argument for SQR
5. A"B with A negative and B not an integer

6. a call to USR with no address patched for the machine
language subroutine.

7. improper arguments to MID$, LEFT$,RIGHTS$, INP, OUT,
WAIT, PEEK, POKE, TAB, SPC, INSTR, STRINGS$, SPACES or
ON...GOTO.

b. An attempt to call a user-defined function which
has not previously apveared in a DEF statement will cause a
UF or UNDEFINED USER FUNCTION error.

c. ATM or TYPE MISMATCH error will occur 1if a
function which expects a string argument is given a numeric
value or vice-versa.

4. STRINGS

In all Altair BASIC versions except 4K, expressions may
either have numeric value or may be strings of characters.
Altair BASIC provides a complete complement of statements
and functions for manipulating string data. Many of the
statements have already been discussed so only their
particular application to strings will be treated in this
section.

4-1., String Data.

A string is a list of alphanumeric characters which may
be from & to 255 characters 1in length. Strings may be
stated explicitly as constants or referred to symbolically
by wvariables. String constants are delimited by quotation
marks at the beginning and end. A string variable name ends
with a dollar sign ($). Examples:

AS="ABCD" Sets the variable A$ to the four character
N string "ABCD"
B9S="14A/56" Sets the variable B9$ to the six character
string "14A/56"
FOOFOOS$="ES$" Sets the variable FOOFOOS$ to the two charac-
ter string "ES$"

Strings input to an INPUT statement need not be surrounded

January, 1977 Page 31

by quotation marks.

String arrays may be dimensioned exactly as any other
kind of array by use of the DIM statement. Each element of
a string array is a string which may be up to 255 characters
long. The total number of string characters in use at any
point in the execution of a program must not exceed the
total allocation of string space or an 0S or OUT OF STRING
SPACE error will result. String space is allocated by the
CLEAR command which is explained in section 6-2.

4-2, String overations.

a. Comparison Operators. The comparison operators for
strings are the same as those for numbers:

= equal

<> not equal

< less than

> greater than

a{,<= less than or egqual to
®>,>3 greater than or equal to

Comparison is made character by character on the basis of
ASCII codes until a difference 1is found. If, while
comparison is proceeding, the end of one string is reached,
the shorter string is considered to be smaller. ASCII ccdes
may be found in Appendix B. Examples:

A<Z ASCII A is 865, 2 is @940

1A ASCII 1 is 049

* A">"A" Leading and trailing blanks are significant
in string literals.

b. String Expressions. String expressions are
composed of string 1literals, string variables and string
function calls connected by the + or concatenation operator.
The effect of the catenation operator is to add the string
on the right side of the operatcr to the end of the string
on the left. If the result of concatenation is a string
more than 255 characters long, an LS or STRING TCO LONG
error message will be 1issued and execution will be
terminated.

c. Input/Output. The same statements used for input
and output of normal numeric data may be used for string
data, as well.

January, 1977 Page 32

1) INPUT, PRINT. The INPUT and PRINT statements read
and write strings on the terminal. Strings need not be
enclosed in quotation marks, but if they are not, leading
blanks will be ignored and the string will be terminated
when the first comma or colon is encountered. Examples:

18 INPUT 200$,F00$ Reads two strings

28 INPUT X$ Reads one string and assigns
it to the variable XS$.

380 PRINT X$,"HI, THERE" Prints two strings, including
all spaces and punctuation
in the second.

2) DATA, READ. DATA and READ statements for string
data are the same as for numeric data. For format
conventions, see the explanation of INPUT and PRINT above.

4-3. String Functions.

The format for intrinsic string function calls 1is the
same as that for numeric functions. For the 1list of string
functions, see section 6-3. Special user-defined string
functions are allowed in Extended and Disk versions and may
be defined by the use of the DEF statement (see section
3-2)., String function names must end with a dollar sign.

5. EXTENDED VERSIONS.

The Extended and Disk versions of Altair BASIC provide
several statements, operators, functions and commands which
are not available either in the 4K or 8K versions. For
clarity, these features are grouped +together in this
section. Some modifications to existing 4K and 8K features,
such as the IF...THEN...ELSE statement and number typing
facilities, have been discussed in conjunction with the
other versions. Check the index for references to those
features.

5-1. Extended Statements

a. ERASE. The ERASE statement eliminates arrays from
a program and allows their space in memory to be used for
other purposes. The format of the ERASE statement is as
follows:

January, 1977 Page 33

ERASE<array variable list>

where the entries in the list are valid array variable names
separated by commas. ERASE will only operate on arrays and
not array elements. If a name appears in the list which |is
not used in the program, an ILLEGAL FUNCTION CALL error will
occur. The arrays deleted in an ERASE statement may be
dimensioned again, but the old values are lost. Example:

10 DIM A(5,5) etc.

60 ERASE A
70 DIM A(180)

b. LINE INPUT. It is often desirable to input a whole
line to a string variable without use of quotation marks and
other delimiters. LINE INPUT provides this facility. The
format of the LINE INPUT statement is as follows:

LINE INPUT ["<prompt string>",];<string variable name>

The prompt string is a string literal that is printed on the
terminal before input is accepted. A question mark is not
printed unless it is contained in the prompt string. All
input from the end of the prompt string to the carriage
return is assigned to the string variable. A LINE INPUT may
be escaped by typing Control/C. At that point, BASIC
returns to command level and prints CX. Execution may be
resumed at the LINE INPUT by typing CONT. LINE INPUT
destroys the input buffer, so the command may not be edited
by Control/A for re-execution.

C. SWAP. The SWAP statement allows the values of two
variables to be exchanged. The format is as follows:

SWAP <variable,variable>

The value of the second variable is assigned to the first
variable and vice-versa. Either or both of the variables
may be elements of arrays. If one or both of the wvariables
are non-array variables whicnh have not had values assigned
to them, an ILLEGAL FUNCTION CALL error will result. Both
variables must be of the same type or a TYPE MISMATCH error
will result. Example:

18 INPUT F$,L$
280 SWAP FS$,L$
38 PRINT F$,L$
RUN

January, 1977 Page 34

?FIRST,LAST Data input
LAST FIRST Computer prints

d. TRON, TROFF. As a debugging aid, two statements
are provided to trace the execution of program instructions.
When the trace flag is turned on by the TRON statement, the
number of each 1line in the program is printed as it is
executed. The numbers appear enclosed 1in square brackets
(1. The function 1is disabled by execution of the TROFF

statement. Example:

TRON executed in direct mode

OK printed by computer

19 PRINT 1:PRINT "A" typed by programmer

29 STOP

RUN

(18] 1 line numbers and output printed by
A computer,

(20]

BREAK IN 20

The NEW command will also turn off the trace flag.
e. IF...THEN...ELSE. See section 2-2.
f. DEFINT, DEFSNG, DEFDBL, DEFSTR. See section 2-1

g. CONSOLE, WIDTH. CONSOLE allows the console
terminal to be switched from one I/0 port to another. The
format of the statement is:

CONSOLE <I/0 port number>,<switch register setting>

The <I/0 port number> is the hardware port number of the low
order (status) port of the new I/0 board. This wvalue must
be a numeric expression between @ and 255 inclusive. If it
is not in this range, an ILLEGAL FUNCTION CALL error will
occur. The <switch register setting> is also a value
between 8 and 255 inclusive which specifies the type of I/0
port (SIO, PIO, 4PIO etc) being selected. Appropriate
values of the <switch register setting> may be found 1in
Appendix B in the table of sense switch settings or in the
table below.

January,

1977 Page 35

Table of values for <switch register setting>:

I/0 Board Sense Switch
Setting
25I0 with 2 stop bits P
2510 with 1 stop bit 1
SI0 2
ACR 3
4PI0 4
PIO 5
HSR 6
non-standard terminal 14
no terminal 15

WIDTH Statement

The WIDTH statement sets the width in characters of the
printing terminal 1line. The format of the WIDTH statement

is as follows:
WIDTH <integer expression>
Example:

WIDTH 8@
WIDTH 32

The <numeric formula> must have a value between 15 and 255
inclusive, or an ILLEGAL FUNCTION CALL error will occur.

h. Error Trapping. Extended and Disk Altair BASIC
make it possible for the user to write error detection and
handling routines which can attempt to recover from errors
or provide more complete explanation of the cause of errors
than the simple error messages. This facility has been
added to Altair BASIC through the use of the ON ERROR GOTO,
RESUME and ERROR statements and with the ERR and ERL
variables.

1) Enabling Error Trapping. The ON ERROR GOTO
statement specifies the line of the Altair BASIC program on
which the error handling subroutine starts. The format |is
as follows:

ON ERROR GOTO <line number>

January, 1977 Page 36

The ON ERROR GOTO statement should be executed before the
user expects any errors to occur. Once an ON ERROR GOTO
statement has been executed, all errors detected will cause
BASIC to start execution of the specified error handling
routine. If the <line number> specified in the ON ERROR
GOTO statement does not exist, an UNDEFINED LINE error will
occur.,

Example:

16 ON ERROR GOTO 1000

2) Disabling the Error Routine. ON ERROR GOTO @
disables trapping of errors so any subsequent error will
cause BASIC to print an error message and stop program
execution. If an ON ERROR GOTO 0 statement appears in an
error trapping subroutine, it will cause BASIC to stop and
print the error message which caused the trap. It is
recommended that all error trapping subroutines execute an
ON ERROR GOTO # subroutine if an error is encountered for
which they have no recovery action.

NOTE

If an error occurs during the execution of an error
trap routine, the system error message will be
printed and execution will be terminated. Error
trapping does not trap errors within the error trap
routine.

3) The ERR and ERL Variables. When the error handling
subroutine is entered, the variable ERR contains the error
code for the error. The error codes and their meanings are
listed below. See section 6-5 for a detailed discussion of
each of the errors and error messages.

ode Error
NEXT WITHOUT FOR
SYNTAX ERROR
RETURN WITHOUT GOSUB
OUT OF DATA
ILLEGAL .FUNCTION CALL
OVERFLOW
OUT OF MEMORY
UNDEFINED LINE
SUBSCRIPT OUT OF RANGE

Voo wnrE-ND

January, 1977 Page 37

19 REDIMENSIONED ARRAY
11 DIVISION BY ZERO

12 ILLEGAL DIRECT

13 TYPE MISMATCH

14 OUT OF STRING SPACE

15 STRING TOO LONG

16 STRING FORMULA TOO COMPLEX
17 CAN'T CONTINUE

18 UNDEFINED USER FUNCTION

149 UNPRINTABLE ERROR

20 NO RESUME

21 RESUME WITHOUT ERROR

22 MISSING OPERAND

23 LINE BUFFER OVERFLOW

Disk Errors

508 FIELD OVERFLOW

51 INTERNAL ERROR
52 BAD FILE NUMBER
53 FILE NOT FOUND
54 BAD FILE MODE

55 FILE ALREADY OPEN
56 DISK NOT MOUNTED

57 DISK I/0 ERROR

58 FILE ALREADY EXISTS

59 SET TO NON-DISK STRING
66 DISK ALREADY MOUNTED

61 DISK FULL

62 INPUT PAST END

63 BAD RECORD NUMBER

64 BAD FILE NAME

65 MODE-MISHMATCH

66 DIRECT STATEMENT IN FILE

67 TOO MANY FILES
68 OUT OF RANDOM BLOCKS

The ERL variable contains the line number of the 1line
where the error was detected. For instance, if the error
occured in line 100d, ERL will be equal to 1044@. If the
statement which caused the error was a direct mode
statement, ERL will be equal to 65535 decimal. To test if
an error occurred in a direct statement, use

IF 65535=ERL THEN ...
In all other cases, use

IF ERL=<line number> THEN...

January, 1977 Page 38

If the line number is on the left of the equation, it cannot
be renumbered by RENUM (see section l-la).

4) Disk Error Values - The ERR function. The ERR
function returns the parameters of a DISK I/O ERROR. ERR(0)
returns the number of the disk, ERR(l) returns the track
number (8-76) and ERR(2) returns the sector number (8-31).
ERR(3) and ERR(4) contain the 1low and high order bytes,
respectively, of the cumulative error count since BASIC was

loaded.

NOTE

Neither ERL nor ERR may appear to the left of the =
sign in a LET or assignment statement.

5) The RESUME statement. The RESUME statement is used
to continue execution of the BASIC program after the error
recovery procedure has been performed. The user has three
options. The user may RESUME execution at the statement
that caused the error, at the statement after the one that
caused the error or at some other line. To RESUME execution

at the statement which caused the error, the wuser should
use:

RESUME
or
RESUME @

To RESUME execution at the statement immediately after the
one which caused the error, the user should use:

RESUME NEXT

To RESUME execution at a line dfferent than the one where
+he error occurred, use:

RESUME <line number>
Where <line number> is not equal to zero.

6) Error Routine Example. The following example shows
how a simple error trapping subroutine operates.

January,

1977 Page 39

100 ON ERROR GOTO 5048

2900 INPUT "WHAT ARE THE NUMBERS TO DIVIDE";X,Y
210 z=X/Y

229 PRINT "QUOTIENT IS";Z

230 GOTO 203

560 IF ERR=11 AND ERL=21d THEN 5240

510 ON ERROR GOTO @

528 PRINT "YOU CANT HAVE A DIVISOR OF ZERO!"
530 RESUME 200

7) The ERROR statement. 1In order to force branching to
an error trapping routine, an ERROR statement has been
provided. The primary use of the ERROR statement 1is to
allow the user to define his own error codes which can then
conveniently be handled by a centralized error trap routine
as described above. The format of the ERROR statement is:

ERROR <integer expression>

When defining error codes, values should be picked which are
greater than the ones used by Altair BASIC. Since more
error messages may be added to Altair BASIC, user-defined
error codes should be assigned the highest possible numbers
to assure future compatibility. If the <numeric expression>
used in an ERROR statement is less than zero or greater than
255 decimal, an ILLEGAL FUNCTION CALL error will occur. Of
course, the ERROR statement may also be used to force SYNTAX
or other standard Altair BASIC errors. Use of an ERROR
statement to force printout of an error message for which no
error text 1is defined will cause an UNPRINTABLE ERROR
message to be printed out.

S-2. Extended Operators.

Two operators are provided that are exclusive to the
Extended and Disk versions.

a. Integer Division. 1Integer division, denoted by \
(backslash), forces 1its arguments to integer form and
truncates the quotient to an integer. More precisely:

A\B= FIX(INT(A)/INT(B))
Its precedence is just after multiplication and floating

point divison. Integer division 1is approximately eight
times as fast as standard floating point division.

January, 1977 Page 40
b. Modulus Arithmetic - the MOD operator. A MOD B
gives the 'remainder' as A is divided by B. More precisely:

A MOD B=INT(A)-(INT(B)*(A\B))

If B=0, a DIVISION BY ZERO error occurs. The precedence of
MOD is just below that of integer division.

5-3., Extended Functions

a. Intrinsic Functions. Extended and Disk Altair
BASIC provide several intrinsic functions which are not
available in the other versions. For a 1list of these
functions and a description of their use, see section 6-3.

b. The DEFUSR statement. Up to ten assembly language
subroutines may be defined by means of the DEFUSR statement
whose form is as follows:

DEFUSR[<digit @ through 9>]=<integer expression>
Example:

DEFUSR1=§100000
DEFUSK2=31396
DEFUSR9=ADR

The of the <integer expression> is the starting address of
the USR routine specified. When the USR subroutine is
entered, the A register contains the type of the argument
which was given to the USR function. This is also the
length of the descriptor for that argument type:

Value in A Meaning

2 Two byte signed two's complement integer.

3 String.

4 Single precision four byte floating point number.
8 Double precision floating point number.

When the USR subroutine is entered, the [H,L] register pair
contains a pointer to the floating point accumulator (FAC).
The (H,L) registers contain the address of FAC-3.

If the value in the FAC is a single precision floating point
number, it is stored as follows:

FAC-3: Lowest 8 bits of mantissa.
FAC=-2: Middle 8 bits of mantissa.
FAC-1: Highest 7 bits of mantissa with hidden (implied)

leading one. Bit 7 is the sign of the number (3
positive, 1 negative).

January, 1977 Page 41

FAC: Exponent excess 288 octal. If the contents of FAC is 200,
the exponent is @. If contents of FAC is @,the number is
zero.

If the argument is double precision floating point, the
FAC-7 to FAC-4 contain four more bytes of mantissa, low
order byte in FAC-7, etc. 1If the argument is an integer,
FAC-3 <contains the 1low order byte and FAC-2 contains the
high order byte of the signed two's complement value. If
the argument is a string, [D,E] points to a string
descriptor of the argument, whose form is:

Byte Use

) Length of string 8-255 decimal.

1-2 Sixteen bit address pointer to first byte of
strings text in memory (Caution - may point into
program text if argument is a string literal).

Normally, the wvalue returned by a USR function will be the
same type (integer, string, single or double precision
floating point) as the argument which was passed te it,
However, calling the MAKINT routine wnose address is stored
in location 6 will return the integer in ([H,L] as the value
of the function, forcing the value returned by the function
to be integer. Execute the following sequence to return
from the function:

PUSH H ;SAVE VALUE TO BE RETURNED
LHLD 6 ;GET ADDRESS OF MAKINT ROUTINE
XTHL ;SAVE RETURN ON STACK &

;GET BACK [H,L)
RET s RETURN

The argument of the function may be forced to an integer, no

matter what its type by calling the FRCINT routine whose
address is located in location 4 to get the integer value of
the argument in (H,L]:

LXI H,SUB1 sGET ADDRESS OF SUBROUTINE
s CONTINUATION

PUSH H sPLACE ON STACK

LHLD ¢ ;GET ADDRESS OF FRCINT

PCHL sCALL FRCINT

SUBl: “ o 800

5-4. The EDIT Command.

January, 1977 Page 42

The EDIT command allows modifications and additions to
be made to existing program lines without having to retype
the entire line each time. Commands typed in the EDIT mode
are, as a rule, not echoed. That is, they usually do not
appear on th2 terminal screen or printout as they are typed.
Most commands may be preceded by an cptional numeric
repetition factor which may be used to repeat the command a
number of times. This repetition factor should be in the
range 8 to 255 (0 is equivalent to 1). If the repetition
factor is omitted, it is assumed to be 1. In the following
examples, a lower case "n" before the command stands for the
repetition factor. In the following description of the EDIT
commands, the "cursor"™ refers to a pointer which is
positioned at a character in the line being edited.

To EDIT a line, type EDIT followed by the number of the
line and hit the carriage return. The line number of the
line being EDITed will be printed followed by a space. The
cursor will now be positioned to the left of the first
character in the line.

NOTE

The best way of getting the "feel" of the EDIT
command is to try EDITing a few lines yourself.

I1f a command not recognized as an EDIT command 1is entered,
the computer prints a bell (control/G) and the command is
ignored.

In the following examples, the lines labelled "computer
prints" show the appearance of the line after each command.

a. Moving the Cursor. Typing a space moves the cursor
to the right and causes the character passed over to be
printed. A number preceding the space (n<space>) will cause
the cursor to pass over and print out n characters. Typing
a Rubout causes the immediately previous character to Dbe
printed effectively backspacing the cursor.

b. 1Inserting Characters

WARNINGS:

January, 1977

Character insertion is stopped by typing Escape
(or Altmode on some terminals). Control/C will not
interrupt the EDIT command while it is 1in 1Insert
mode, but will be inserted into the edited line.
Therefore, Control/C should not be used in the EDIT
command.

It is possible using EDIT to create a 1line
which, when 1listed with its line number, is longer
than 72 characters. Punched paper .tapes containing
such 1lines will not read properly. However, such
lines may be CSAVEd and CLOADed without error.

Page 42

I Inserts new characters into the line being edited.

Each character typed after the I is inserted at
the current cursor position and printed on the
terminal. Typing Escape (or Altmode on some
terminals) stops character insertion. If an
attempt is made to insert a character that will
make the line 1longer than 255 characters, a
Control/G (bell) is sent to the terminal and
the character is not printed.

A backarrow (or Rubout) typed during an insert
command (or-) will delete the character to the left

of the cursor. Characters up to the beginning

the 1line may be deleted in this manner, and a
backarrow will be echoed for each character
deleted. However, 1if there are no characters to
the left of the cursor, a bell is echoed instead of
a backarrow. If a carriage return is typed during
an insert command, it is as if an escape and then

carriage return were typed. That is,

characters to the right of the cursor will be

printed and the EDITed line will replace
original line.

X is similar to I, except that all characters to

the right ¢f the cursor are printed, and the cursor
moves to the end of the line. At this point, it

will automatically enter the insert mode (see

command). ¥ is most useful when new statements are

to be added to the end of an existing line.

example:
User types EDIT 50 (carriage return)
Computer prints 5@
User types X
Computer prints 58 X=X+1
User types :¥=¥+1 (CR)

Computer prints 58 X=X+1l:Y=Y+1

January, 1977 Page 44

In the above example, the original'line $50 was:
50 X=X+1

The new line #50 now reads:

50 X=X+l:Y=Y+l

H H is the same as X, except that all characters to
the right of the cursor are deleted (they will not
be printed). The insert mode (see I command) will
then automatically be entered. H is most useful
when the 1last statements on a 1line are to be
replaced with new ones.

¢. Deleting Characters

D nD deletes n characters to the right of the

cursor. If n is ommitted, it defaults to 1. I1f
there area 1less than n characters to the right of
the cursor, characters will be deleted only to the
end of the line. The cursor is positioned to the
right of the last character deleted. The
characters deleted are enclosed in backslashes (\).
For example:

User types 20 X=X+1:REM JUST INCREMENT X
User types EDIT 20 (carriage return)
Computer prints 20

User types 6D (carriage return)

Computer prints 29 \X=X+1:\REM JUST INCREMENT X

The new line #20 will no longer contain the characters
which are enclosed by the backslashes.

d. Searching.

S The nSy command searches for the nth occurrence of the
character y in the line. N defaults ¢to 1. The
search skips over the first character to the right
of the cursor and begins with the second character
to the right of the cursor. All characters passed
over during the search are printed. 1f the
character is not found, the cursor will be at the
end of the line. If it is found, the cursor will
stop to the right of the character and all of the
characters to its left will have been printed. For
example

56 REM INCREMENT X
EDIT 540

User types
User types

January, 1977

K

e.
C

f.
Carriage
E
Q
L

Page 45
Computer prints 58
User types : 2SE
Computer prints 58 REM INCR

nKy is equivalent to S except that all of the
characters passed over during the search are
deleted. The deleted characters are enclosed in
backslashes. For example:

User types 10 TEST LINE
User types EDIT 14
Computer prints 12

User types KL
Computer prints 19 \TEST \

Text Replacement.

=
A character in a line may be changed by the use of
the command Cy which changes the character to the
right of the cursor to the «character y. Y is
printed on the terminal and the cursor is advanced
one position. nCy may be usad to change n
characters in a line as they are typed in from the
terminal. (See example below.} If an attempt is
made to change a character which does not exist,
the change mode will be exited. Example:

User types 18 FOR I=1 TO 169
User types EDIT 10

Computer prints 10

User types 251

Computer prints 18 FOR I=1 TO

User types 3C256
Computer prints 14 FOR I=1 TO 256

Ending and Restarting

Return Terminates editing and prints the re-
mainder of the line. The edited line replaces the
original line.

E is the same as a carriage return, except the
remainder of the line is not printed.

Q restores the original line and causes BASIC to
return to command level. Changes do not take
effect until an E or carriage return is typed, so Q
allows the wuser to restore the original 1line
without any changes which may have been made.

L causes the remainder of the line to be printed, and
then prints the line number and restarts editing at

January,

1977 Page 46

the beginning of. the 1line. The cursor will be
positioned to the left of the first character in
the 1line. L allows monitoring the effect of
changes on a line. Example:

User types S8 REM INCREMENT X
User types EDIT 50
Computer prints 50
User types 2SM
Computer prints 58 REM INCRE
User types L
Computer prints 58 REM INCREMENT X
50
A A causes the original line to be restored

and editing to be restarted at the beginning of the
line. For example:

User types 18 TEST LINE

User types EDIT 10

Computer prints 12

User types 16D

Computer prints 19 \TEST LINE\

User types A

Computer prints 19 \TEST LINE\
10

In the above example, the user made a mistake when
he deleted TEST LINE. Suppose that he wants to
type "1D" instead of 19D. As a result of the A
command, the original line 10 is reentered and is
ready for further editing.

IMPORTANT
Whenever a SYNTAX ERROR is discovered during the execution
of a source program , BASIC will automatically begin EDITing
the line that caused the error as if an EDIT command had
been typed. Example:

19 APPLE

RUN

SYNTAX ERROR IN 18
10

Complete editing of a 1line causes the line edited to be
reinserted. Reinserting a line causes all variable values
to be deleted. To preserve those values for examination,
the EDIT command mode may be exited with the Q command after
the 1line number 1is printed. 1If this is done, BASIC will
return to command level and all variable values will be
preserved.

January, 1977 Page 47

The features of the EDIT command may be wused on the
line currently being typed. To do this, type Control/A
instead of Carriage Return. The computer will respond with
a carriage return, an exclamation point (!) and a space.
The cursor will be positioned at the first character of the
line. At this point, any of the EDIT subcommands except
Control/A may be used to correct the line. Example:

User types 19 IF X GOTO #"/A
Computer prints {
User types S# 2C12

Computer prints ! 18 IF X GOTO 12

The current line number may be designated by a period
(.) in any command requiring a line number. Examples:

User types 19 FOR I= 1 TO 19
User types EDIT .
Computer prints 19

5=5. PRINT USING statement.

The PRINT USING statement can be emploved in situations
where a specific output format is desired. This situation
might be encountered 1in such applications as printing
payroll checks or accounting reports. The general format
for the PRINT USING statement is as follows:

PRINT USING <string>;<value list>

The <string> may be a string wvariable , string expression or
a string constant which is a precise copy of the line to be
printed. All of the characters 1in the string will be
printed just as they appear, with the exception of the
formatting characters. The <value list> is a 1list of the
iteams to be printed. The string will be repeatedly scanned
until: 1) the string ends and there are no values in the
value 1list or, 2) a field is scanned in the string, out the
value 1list 1is exhausted. The string is constructed
according to the following rules:

a. String Fields.

| specifies a single character string field.
(The string itself is specified in the value list.)
\n spaces\ Specifies a string field consisting of 2+n char-
acters. Backslashes with no spaces between them

January, 1977 Page 48

would indicate a field of 2 characters width, one
space between them would indicate a field 3
characters wide, etc.

In both cases above, if the string has more characters than
the field width, the extra characters will be ignored. If
the string has fewer characters than the field width, extra
spaces will be printed to fill out the entire field. Trying
to print a number in a string field will cause a TYPE
MISMATCH error to occur. Example:

16 AS="ABCDE" :3$="FGH"
26 PRINT USING "!";A$;BS
38 PRINT USING "\ \";BS;A$

(the above would print out)

AF
FGH ABCD

Note that where the "!" was used only the first 1letter of
each string was printed. Where the backslashes enclosed two
spaces, four letters from each string were printed (an extra
space was printed for B$ which has only three characters).
The extra characters in the first case and for A$ 1in the
second case were ignored.

b. Numeric Fields. With the 2RINT USING statement,
numeric printouts may be altered to suit almost any
application. Strings for formatting numeric fields are
constructed from the following characters:

L[]

Numeric fields are specified by the # sign, each of
which will represent a digit position. These digit
positions are always filled. The numeric field
will be right justified; that is, 1if the number
printed 1is too small to fill all of the digit
positions specified, leading spaces will be printed
as necessary to fill the entire field.

The decimal point may be specified in any position
in the field. Rounding is performed as necessary.
If the field format specifies that a digit is to
precede the decimal point, the digit will always be
printed (as O if necessary).

The follcwing program will help illustrate these rules:

January, 1977 Page 49

18 INPUT AS,A
29 PRINT USING A§;A
30 GOTO 140
RUN
? #3,12
12
? ##3,12
12

? #4883,12
12
?33.4%,12
12.00
? $##4.,12
12.
? #.882,.02
6.029
?23#4.%4,2.36
2.4
?2384,-12
-12
2¢#.3%,-.12
--12
?2%84d4,-12
-12

+ The + sign may be used at either the beginning or
end of the numeric field. If the number is
positive, the + sign will be printed at the
specified end of the number. If the number is
negative, a - sign will be printed at the specified
end of the number.

- The - sign, when used to the right of the numeric .
field designation, will force the minus sign to be
printed to the right of the number if it is
negative. If the number is positive, a space |is
printed.

k% The ** placed at the beginning of a numeric field
designation will cause any unused spaces in the
leading portion of the number printed out to be
filled with asterisks. The ** also specifies
positions for 2 more digits. (Termed "asterisk
£i11")

$S When the $$ is used at the beginning of a numeric
field designation, a § sign will be printed in the
space immediately preceding the number 2rinted.
Note that $$ also specifies positions for two more
digits, but that the § itself takes up one of these
spaces. Exponential format cannot be wused with
leading $ signs, nor can negative numbers be outpnt

January,

1977

**s

AAAA

Page 50

unless the sign is forced to be trailing.

The **$ used at the beginning of a numeric field
designation causes both of the above (** and $§) to
be performed on the number being printed out. All
of the previous conditions apply, except that **§
allows for 3 additional digit positions, one of
which is the $ sign.

A comma appearing to the left of the decimal point

in a numeric field, designation will cause a comma
to be printed to the left of every third digit to
the left of the decimal point in the number being
printed. The comma also specifies another digit
position. A comma to the right of the decimal
point in a numeric field designation is considered
a part of the string itself and is treated as a
printing character.

(‘I | lon some terminals) Exponential Format.

1f exponential format is desired in the printout,
the numeric field designation should be followed by
“*%" (allows space for E+XX). Any decimal point
arrangement is allowed. The significant digits are
left Jjustified and the exponent is adjusted.
Unless a leading + or a trailing + or - is used,
one position to the left of the decimal point will
be used to print a space or minus sign. Examples:

PRINT USING "[£&~"**]"; 13,17,-8

{ 1E+01) [2E+@1) [-8E+80]

OK

PRINT USING " [.#44%33"°77"~]1; 12345,-123456
(.123450E+05) [.123456E+06-)

OK

PRINT USING "[+.%4""""]"; 123,-126
{+.12E+03] [-.13E+83]

OK

If the number to be printed out is larger than the
specified numeric field, a &% <character will be
printed followed by the number itself in standard
Altair BASIC format. (The user will see the entire
number.) If rounding a number causes it to exceed
the specified field, the % character will be
printed followed by the rounded number. If, for

example, A=.999, then
PRINT USING ".33#",A

will print

January, 1977 Page 51

t1.00.

I1f the number of digits specified exceeds 24, an
ILLEGAL FUNCTION CALL error will occur.

The following program will help illustrate the
preceding rules.

Program: 19 INPUT AS,A
290 PRINT USING AS$S;A
38 GCTO 19
RUN

The computer will start by typing a ?. The numeric field
designator and value list are entered and the output is
displayed as follows:

? +¢#,9

+9

? +%#,10
$+10

? ##:-2
-2

? +#'-2
-2

? #1‘2
$-2
?2 +.8%%,.02
+.829
2 ##7#.%,100

100.0
? #3+,2

2+
? THIS IS A NUMBER ##%#,2
THIS IS A NUMBER 2
? BEFORE ## AFTER,12
BEFORE 12 AFTER
? 33#%,44444
$44444
2 **3z,1
*tkk]
? **33,12
*%k]2
? **33,123
*123
? **$3,1234
1234
2 **33,12345
$12345
? %%,
*]
? **,22

January,

1977

22

? **.##'12

12.09

? **3ize.l

kkkkk]

(note: not floating §)

(note: floating §)

? $#,6.9

7

? #l#lsngg
7.0

? ##“02
2

? #3-0'2

? ##+,2
2+

? ##+l-2
2-

? ##AAAA'z
2E+00

? $347°77,12
1E+81

? #3858.8487777,2.45678

2456.780E-03
? 4.444°°°7,123
9.123E+063
? #.8437°°7,-123

? “§344%,434.4",1234567.89

1,234,570.0

S#343.22,12.34
12.34
$S#333.33,12.56

$12.56

? $$.%##,1.23

$1.23

? $5.3%#,12.34

$$12.34

? $$g##,ﬂ.23

$

? SSaze#.d%.,0

$6.00
? **9i3d.88,1.23
*rxeg) 23
? **§.§#,1.23
*$1.23
? **S3dd,l

kkkkG]

)W

Typing Control/C will stop the program.

5"'6-

Disk file ocerationc.

Page 52

January, 1977 Page 53

As many as sixteen floppy disks may be connected to a
single ALTAIR disk controller. These disks have been
assigned the physical disk numbers @ through 15. Users with
one drive should address the drive at zero, and users with
two drives should address them at zero and one, etc.

In the following descriptions, <disk number> is an
integer expression whose value is the physical number of one
of the disks in the system. If the <disk number> is omitteq
from a statement other than MOUNT or UNLOAD, the <disk
number> defaults to #. If the <disk number> is omitted from
a MOUNT or UNLOAD statement, disks @ through the highest
disk number specified at initialization are affected.

a. Opening, Closing and NWaming Files. To initialize
disks for reading and writing, the the MOUNT command is
issued as follows:

MOUNT [<disk number>[,<disk number>...]]
Example:

MOUNT @
Mounts the disk on drive zero, and

MOUNT 4,1
Mounts the disks on drives zero and one. If there |is
already a disk MOUNTed on the specified drive(s) a
DISK ALREADY MOUNTED message will be printed. Before
removing a disk which has been used for reading and writing
by- Disk Altair BASIC, the user should give an UNLOAD
command:

UNLOAD [<disk number>[,<disk number>...]]
UNLOAD closes all the files open on a disk, and marks the

disk as not mounted. Before any further I/0 is done on an
UNLOADed disk, a MOUNT command must be given.

NOTE

MOUNT, UNLOAD or any other disk command may be used
as a program statement.

All data and program files on the disk have an associated
file name. This name is the result of evaluating a string

January, 1977 Page 54

expression and must be one to eight characters in length.
The first character of the file name cannot be a null (4d)
byte or a byte of 255 decimal. An attempt to use a null
file name (zero characters in length) , a file name over 8
characters in length or containing a @ or 255 in the first
character position will cause a BAD FILE NAME error. Any
other sequence of one to eight characters is acceptable.

Examples of valid file names:

ABC

abc (Not the same as ABC)
filename

file.ext

12345678

INVNTORY

FILE$##22

NOTE

Commands that require a file name will wuse <file
name> in the appropriate position. Remember that a

<file name> can be any string expression as long as
the resulting string follows the rules given above.

b. The FILES Command. The FILES command is used to
print out the names of the files residing on a particular
disk. The format of the FILES command is:

FILES <disk number>
Example:
FILES (prints directory of files on disk @)
STRTRK PIP CURFIT CISASM
Execution of the FILES command may be interrupted by typing
Control/C. A more complete 1listing of the information

stored in a particular file may be obtained by running the
PIP utility program (see Appendix I).

c. SAVEing and LOADing programs. Once a program has
been written, it is often desirable to save it on a disk for
use at a later time. This is accomplished by issuing a SAVE
command:

January, 1977 Page 55

SAVE <file name>[,<disk number>[,A]]
Exanmple:

SAVE "TEST",@
or

SAVE "TEST"

would save the program TEST on disk zero. Whenever a
program is SAVEd, any existing copy of the program
previously SAVEd will be deleted, and the disk space used by
the previous program is made available. See section 5-6d
for a discussion of saving with the 'A' option.

The LOAD statement reads a file from disk and loads it
into memory. The syntax of the LOAD statement is:

LOAD <file name>[,<disk number>[,R]]
Correspondingly:
LOAD "TEST",® or LOAD "TEST"

loads the program TEST from disk zero. If the file does not
exist, a FILE NOT FOUND error will occur.

LOAD "TEST",8,R
OK

LOADs the program TEST from disk zero and runs it. The LOAD:
command with the "R" option may be used to chain or segment
programs into small pieces if the whole program is too large
to fit in the computer's memory. All variables and program
lines are deleted by LOAD, but all data files are kept
OPEN (see below) 1if the "R" option 1is used. Therefore,
information may be passed between rrograms through the use
of disk data files. If the "R" option 1is not wused, all
files are automatically CLOSEd (see below) by a LOAD.

Example:

WEW
16 PRINT "FOOl":LOAD "F0OO2",0,R
SAVE "FOOl1",d

OK
18 PRINT "FOO2":LOAD "FOO1",d,R
SAVE "FO02",3d

January, 1977 Page 56

OK

RUN
FOO02
FOO1l
FO02
FOO1l
«sctc.

(Control/C may be used to stop execution at this point)

In this example, program FOO2 is RUN. FOO2 prints the
message "F002" and then «calls the program FOOl on disk.
FOOl prints "FOOl" and calls the program FOO2 which prints
"FO02" and so on indefinitely.

RUN may also be used with a file name to load and run a
program. The format of the command is as follows:

RUN<file name>[,<disk number>[,R]]

All files are closed unless ,R is specified after the disk
number.

d. SAVEing and LOADing Program Files in ASCII. Often
it is desirable to save a program in a form that allows the
program text to be read as data by another program, such as
a text editor or resequencing program. Unless otherwise
specified, Altair BASIC saves its programs in a compressed
binary format which takes a minimum of disk space and loads
very quickly. To save a program in ASCII, specify the "A"
option on the SAVE command:

SAVE "TEST",d,A
OK
LOAD "TEST",9

OK

Information in the file tells the LOAD command the
format in which the file is to be 1loaded. The first
character of an ASCII file 1is never 255, and a binary
program file always starts with 255 (377 octal). Remember,
%gading an ASCII file is much slower than loading a binary

le.

January, 1977 Page 57

e. The MERGE Command. Sometimes it is very useful to
put parts of two programs together to form a new program
combining elements of both programs. The MERGE command is
provided for this purpose. As soon as the MERGE command has
been executed; BASIC returns to command level. Therefore it
is more likely that MERGE would be used as a direct command
than as a statement in a program. The format of the MERGE
statement is as follows:

MERGE <file name>[,<disk number>]
Example:

MERGE "PRINTSUB",1
OK

The <file name> specified is merged into the program already
in memory. The <file name> must specify an ASCII format
saved program or a BAD FILE MODE error will occur. If there
are 1lines 1in the program on disk which have the same line
numbers as lines in the program in memory, the 1lines from
the file on disk will replace the corresponding program
lines in memory. It is as if the program lines of the file
on disk were typed on the user terminal.

f. Deleting Disk Files. The KILL statement deletes a
file from disk and returns disk space used by the file to
free disk space. The format of the KILL statement is as
follows:

RKILL <file name>[,<disk number>]

If the file does not exist, a FILE NOT FOUND error will
occur. If a KILL statement is given for a file that |is
currently OPEN (see below), a FILE ALREADY OPEN error

occurs.

g. Renaning Files - the NAME Statement. The NAME
statement is used to change the name of a file:

NAME <o0ld file name> AS <new file name>[,<disk number>]
Example:
NAME "OLDFILE"™ AS "NEWFILE®
The <old file name> must exist, or a FILE NOT FOUND error
will occur. A file with the same name as <new file name>

must not exist or a FILE ALREADY EXISTS error will occur.
After the NAME statement is executed, the file exists on the

January, 1977 Page 58

same disk in the same area of disk space. Only the name is
changed.

h. OPENing Data Files. Before a program can read or
write data to a disk file, it must first OPEN the file on
the appropriate disk in one of several modes. The general
form of the OPEN statement is:

OPEN <mode>, [%#]<file number>,<file name>[,<disk number>]

<mode> is a string expression whose first character is one
of the following:

0 Specifies sequential output mode
I Specifies sequential input mode
R Specifies random Input/Output mode

A sequential file is a stream of characters that is read or
written in order much like INPUT and PRINT statements read

from and write to the terminal. Random files are divided
into groups of 128 characters called records. The nth
record of a file may be read or written at any time. Random
files have other attributes that will be discussed later in
more detail.

¢file number> is an integer expression between one and
fifteen. The number is associated with the file being
OPENed and is used to refer to the file in 1later 1I/0
operations.

Examples:

OPEN "O",2,"OUTPUT",8
OPEN "I",1,"INPUT"

The above two statements would open the file OUTPUT for

sequential output and the file INPUT for sequential input on
disk zero.

OPEN M$,N,F$,D

The above statement would open the file whose name was in
the string F$ in mode M$ as file number N on disk D.

i. Sequential ASCII file 1I/0 Sequential input and
output files are the simplest form of disk input and output
since they involve the use of the INPUT and PRINT statements

Janvary, 1977 Page 59

with a file that has been previously OPENed.

INPUT is used to read data from a disk file as follows:
INPUT #<file number>,<variable list>

where <file number> represents the number of the file that
was OPENed for input and <variable list> is a 1list of the
variables to be read, as in a normal INPUT statement. When
data is read from a sequential input file using an INPUT
statement, no question mark (?) is printed on the terminal.
The format of data in the file should appear exactly as it
would be typed to a standard INPUT statement to the
terminal. When reading numeric values, leading spaces,
carriage returns and line feeds are ignored. When a
non-space, non-carriage return, non-line-feed character is
found, it is assumed to be part of a number in Altair BASIC
format. The number terminates on a space, a carriage return
line~-feed or a comma.

When scanning for string items, leading blanks,
carriage returns and 1line~feeds are also ignored. When a
character which is not a leading blank, carriage return or
line~-feed 1is found, it is assumed to be the start of a
string item.If this first character is a quotation mark (")
the item is taken as being a quoted string, and all
characters between the first double quote (") and a matching
double qucte are returned as characters in the string value.
This means that a quoted string in a file may contain any
characters except double quote., If the first character of a
string item is not a quotation mark, then it is assumed to
be an unguoted string constant. The string returned will
terminate on a comma, carriage return or line feed. The
string is immediately terminated after 255 characters have
been read.

For both numeric and string items, if end of file (EOF)
is reached when the item is being INPUT, the item is
terminated regardless of whether or not a closing quote was
seen.

Sequential I/O commands destroy the input buffer so
they may not be edited by Control/A for re-execution.

Example of sequential I/0 (numeric items):

500 OPEN "O",1,"FILE",@
519 PRINT #1,X,Y,2
520 CLOSE #1

January, 1977 Page 60

539 OPEN "I",1,"FILE",0
540 INPUT #1",X,Y,2

Note that CLOSE is used so that a file which has just been
written may be read. When FILE is re-OPENed, the data
pointer for that file is set back to the beginning of the

file so that the first INPUT on the file will read data from
the start of the file.

2) PRINT and PRINT USING statements are used to write
data into a sequential output file. Their formats are as
follows:

PRINT #<file number)>,<expression list>

or

PRINT #<file number>,
USING <string expression>;<expression list>

Example of sequential I/O (quoted string items):

56¢ OPEN "O",1,"FILE"

519 PRINT #1,CHRS(34);X$;CHRS (34);

515 PRINT %1,CHRS (34);Y$;CHRS (34) ;CHRS (34);2$;CHRS (34)
526 CLOSE 1

53¢ OPEN "I",1,"FILE",0

54¢ INPUT 3#1,XS$,Y$,Z$

In this example, the strings being output (X$, ¥$, 2$) are
surrounded with double quotes through the use of the CHRS
function to generate the ASCII value for a double guote.
This technique must be used if a string which is being
output to a sequential data file contains commas, carriage
returns, 1line-feeds or leading blanks that are significant.
When leading blanks are not significant and there are no
commas, carriage returns or line-fzeds in the strings to be
output, it is sufficient to 1insert commas between the
strings being output as in the following example:

5S¢8 OPEN "O",1l,"FILE"

519 PRINT #1,XS$;",";Y$;",";Z$
5280 CLOSE 1

530 OPEN "I",1,'FILE",@

540 INPUT #1,X$,Y$,2%

3) CLOSE. The format of the CLOSE statement is as
follows:

CLOSE [{file number>[,<file number>...]]

January, 1977 Page 61

CLOSE is wused to finish I/0 to a particular Altair BASIC
data file. After CLOSE has been executed for a file, the
file may be reOPENed for 1input or output on the same or
different <file number>. A CLOSE for a sequential output
file writes the final buffer of output. A CLOSE to any OPEN
file finishes the connection between the <file number> and
the <file name> given in the OPEN for that file. It allows
the <file number> to be used again in another OPEN
statement.

A CLOSE with no argument CLOSEs all OPEN files.

NOTE

A FILE can be OPENed for sequential input or random
access on more than one <file number> at a time but
may be OPEN for output on only one <file number> at
a time.

END and NEW always CLOSE all disk files automatically. STOP
does not CLOSE disk files.

4) LINE INPUT. Often it is desirable to read a whole
line of a file into a string without using quotes, ccmmas or
other characters as delimiters. This is especially true |if
certain fields of each line are being used to contain data
items, or if a BASIC program saved in ASCII mode 1is being
read as data by another program. The facility provided to

perform this function is the LINE IWPUT statement:
LINE INPUT $#<file number>,<string variable>

A LINE INPUT from a data file will return all characters up
to a carriage return in <string variable>. LINE INPUT then
skips over the following carriage return/line-feed sequence
so that a subsequent LINE INPUT from the file will return
the next line.

5) End of File (EOF) Detection. When reading a
sequential data file with INPUT statements it is usually
desirable to detect when there is no more data in the disk
file. The mechanism for detecting this condition is the EOF
function:

X=EOF (<file number>)

EOF returns TRUE (-1) when there is no more data in the file
and FALSE (0) otherwise. If an attempt is made to INPUT

January,

1977 Page 62

past the end of a data file, an INPUT PAST END error will
occur.

Example: :

190 OPEN "I",1,"DATA",0
1190 I=0

12¢ IF EOF(l) THEN 160
138 INPUT £1,A(I)

140 I=I+1

158 GOTO 128

160 e e 0 & @ 0

In this example, numeric data from the sequential input file
DATA is read 1into the array A. When end of file |is
detected, the IF statement at line 128 branches to line 164,
and the variable I "points" one beyond the last element of A
that was. INPUT from the file.

The following is a program that will calculate the
number of lines in a BASIC program file that has been SAVEd
in ASCII mode:

19 INPUT "WHAT IS THE NAME OF THE PROGRAHM";P$
29 OPEN "I",1,P$,0

30 1=0

40 IF EOF(1) THEN 70

50 I=I+1:LINE INPUT 21,LS

60 GOTO 40

760 PRINT "PROGRAM ";P$;" IS ";I;" LINES LONG"
88 END

This example uses the LINE INPUT statement to read each line
of the program into the "dummy" string L$ which is used just
to INPUT and ignore that part of the file.

6) Finding the Amount of Free Disk Space (DSKF). It is
sometimes necessary to determine the amount of free disk
space remaining on a particular disk before allocating
(writing) a file. The DSKF function provides the user with
the number of free groups left on a given disk, after the
disk has been MOUNTed. A group is the fundamental unit of
file allocation. That is, files are always allocated in
groups of eight sectors at a time. Each sector contains 128
characters (bytes). Therefore, the minimum size for a file
is 1824 bytes.

Syntax for the DSKF function:
DSKF (<disk number>)

Example:

January, 1977 Page 63

PRINT DSKF (8)
208

The above example shows that there are 200*1024=204800
characters (bytes) that can still be stored on disk zero.

j. RANDOM FILE I/O. Previously, we have discussed how
data may be PRINTed or INPUT from sequential data files.
However, it is often desirable to access data in a random
fashion, for instance to retrieve information on a
particular part number or customer from a large data base
stored on a floppy disk. If sequential files were used, the
whole file would have to be scanned from the start until the
particular item was found. Random files remove this
restriction and allow a program to access any record from
the first to the last in a speedy fashion. Also, random
files transfer data from variables to the disk ouput records
and vice versa in a much faster, more efficient fashion than
sequential files. Random file I/0 is more complex than
sequential I/0, and it 1is recommended that beginners try
sequential I/0 first.

1) OPENing a FILE for Random I/O. Random I/O0 files are
OPENed just like sequential files.

OPEN "R",1,"RANDOM",0

When a file is OPENed for random 1/0, it is always OPEN for
both input and output simultaneously.

2) CLOSING Random Files. Like sequential files, random
files must be closed when I/0 operations are finished. To
CLOSE a random file, use the CLOSE command as described
previously.

CLOSE <file number>[,<file number>...]

3) Reading and writing data to a random file - GET and
PUT. Each random file has associated with it a "random
buffer" of 128 bytes. When a GET or PUT operation is
performed, data 1is transferred directly from the buffer to
the data file or from the data file to the buffer. The
syntax of GET and PUT is as follows:

January, 1977 Page 64

PUT [$#)<file number>[,<record number>]
GET [#]<file number>[,<record number>]

If <record number> is omitted from a GET or PUT statement,
the record number that is one higher than the previous GET
or PUT 1is read into the random buffer. Initially a GET or
PUT without a record number will read or write the first
record. The largest possible record number is 2046. If an
attempt is made to GET 2 record which has never been PUT,
all zeroes are read into the record, and no error occurs.

4) LOC and LOF. LOC is wused to determine what the
current record number is for random files. 1In other words,
it returns the record number that will be used if a GET or
PUT is executed with the <record number> parameter omitted.

LOC(<file number>)

PRINT LOC(1)
15

LOC is also valid for sequential files, and gives the number
of sectors (128 byte blocks) read or written since the OPEN
statement was executed.

LOF is used to determine the last record number written to a
random file:

LOF (<file number>)

PRINT LOF(2)
200

An attempt to use LOF on a sequential file will cause a BAD
FILE MODE error.

The value returned by LOF is always £ MOD 8. That is , when
the wvalue LOF returns 1is divided by 8, the remainder is
always 5. Therefore,the values returned by LOF are 5, 13,
21, 29 etc. This is due to the way random files are
allocated.

January, 1s/7 Page 65

NOTE

It is important to note that the wvalue returned by
LOF may be a record that has never been written in
by a user program. This 1is because of the way
random files are pre-extended.

S) Moving Data In and Out of the Random Buffer. So far
we have described techniques for writing (PUT) and reading
(GET) data from a file into its associated random buffer.
Now we will describe how data from string variables is moved
to and from the random buffer itself. This is accomplished
through the use of the FIELD, LSET and RSET statements.

6) FIELD. The FIELD statement associates some or all
of a file's random buffer with a particular string variable.
Then, when the file buffer is read with GET or written with
PUT, string variables which have been FIELDed into the
buffer will automatically have their contents tead or
written. The format of the FIELD statement is:

FIELD [3] <file number> ,<field size> AS <string variable>[.

<file number> is used to specify the f£ile number of the file
whose random buffer is being referenced. 1If the file is not
a random file, a BAD FILE !ODE error will occur. <field
size> sets the length of the string in the random buffer.
{string variable> is the string variable which is associated
with a certain number of characters (bytes) in the buffer.
Multiple fields may be associated with string variables in a
given FIELD statement. Each successive string variable is
assigned a successive field in the random buffer. Exanple:

FIELD 10 AS AS$, 20 AS BS$, 38 AS C§

The statement above would assign the first 16 characters of
the random buffer to the string variable AS$, the next 28
characters to B8$ and the next 30 characters to the variable
Cs. It is important to note that the FIELD statement does
not cause any data to be transferred to or from the random
buffer. It only causes the string wvariables given as
arguments to "point" into the random buffer.

Often, it is necessary to divide the random buffer into
a number o0f sub-records to mak2 more a2fficient use of disk
space. For instance, it might be desirable to divide the
128 character record into two identical subrecords. To
accomplish this a "dummy variable" would be placed 1in the
FIELD statement to represent one of the subrecords. One of
the following statements would be executed depending on
whether the first or second subrecord were needed:

January,

1977 Page 66

FIELD 31,64 AS D$, 20 AS NAMES,
20 AS ADDRESSES$, 24 AS OCCUPATIONS

or

- FIELD #1,20 AS NAMES, 20 AS ADDRESSES,
24 AS OCCUPATICNS, 64 AS D3

where the dummy variable D$ is used to skip over one of the
subrecords. Another way to do the same thing would be to
set a variable I that would select the first or second
subrecord.

FIELD 31,64*(I-1) AS DS,
20 AS NAHES, 28 AS ADDRESSS$, 24 AS OCCUPATIONS

Here, if the variable I is one, I-1 *64 =8 characters will
be skipped over, selecting the first subrecord. If I is
two, 64 characters will be skipped over, selecting the
second subrecord. Another technique that is very useful is
to use a FOR...NEXT loop and an array to set up subrecords
in the random buffer:

1808 FOR I=1 TO 16

1810 FIELD #1, (I-1)*8 AS D$, 4 AS A$(I),
4 AS BS(I)

1920 NEXT I

In this example, we have divided the random buffer into 16
subrecords composed of two fields each. The first
4-character field is in A$(X) and the second d4-character
field is in BS(X,) where X is the subrecord number.

NOTE
The FIELD statement may be executed any number of
times on a given file. It does not cause any
allocation of string space. The only space

allocation that occurs 1is for the string variables
mentioned in the FIELD statement. These string
variables have a one byte count and two byte pointer
set up wnich points into the random buffer for the
specified file.

January, 1977 Page 67

7) Using Numeric Values in Random Files: MKIS$, MKSS,
MKDS and CVI, CVS, CVD. As we have seen, data is always
stored in the random buffer through the use of string
variables. In order to convert between strings and numbers
and vice versa, a number of special functions have been
provided.

To convert between numbers and strings:

MKIS$ (<integer value>) Returns a two byte string

(FC error if wvalue is not

>==32768 and <=+32767.

Fractional part is lost)
MKS$ (<single precision value>) Returns a four byte string
MKD$ (<double precision value>) Returns an eight byte string

To convert between strings and numbers:

CVI(<two byte string>) Returns an integer value
CVS (<four byte string>) Returns a single precision value
CVD(<eight byte string>) Returns a double precision value

CVI, CVS, and CVD all give an ILLEGAL FUNCTION CALL error if
the string given as the argument is shorter than required.
If the string argument is longer than necessary, the extra
characters are ignored. These functions are extremely fast,
since they convert between Altair BASIC's internal
representations of integers, single and double precision
values and strings. Conventional sequential I/0 must
perform time-consuming character scanning algorithms when
converting between numbers and strings.

8. LSET and RSET. When a GET operation is performed,
all string variables which have been FIELDed into the random
buffer for that file automatically hawve values assigned to
them. The CVI, CVS and CVD functions may be used to convert
any numeric fields in the record to their numeric values.
When going the other way, i.e. 1inserting strings into the
random buffer before performing a PUT statement, a problem
arises. This 1is because of the way string assignments
usually take place. For example:

LET A$=BS$

When a LET statement is executed, B$ is copied into string
space, A$ is pointed to the new string and the string length
of A$ is modified. However, for assignments into the random
buffers we do not want this to happen. Instead, we want the
string being assigned to be stored where the string variable
was FIELDed. In order to do this, two special assignment

January,

1977 Page 68

statements have been provided, LSET and RSET:

LSET <string variable>=<string expression>
RSET <string variable>=<string expression>

Examples:
LSET AS$=MKSS (V)
RSET B$S="TEST"
LSET C$(I)=MKDS$ (D#)

The difference between LSET and RSET concerns what happens
if the string value being assigned 1is shorter than the
length specified for the string variable in the FIELD
statement. LSET left Jjustifies the string, adding blanks
(octal 48, decimal 32) to pad out the right side of the
string if it is too short. RSET right justifies the string,
padding on the left. If the string value is too 1long, the
extra characters at the end of the string are ignored.

NOTE

Do not use LSET or RSET on string wvariables which
have not been mentioned in a FIELD statement, or a
SET TO NON DISK STRING error will occur.

k. The DSKI$ and DSKO$ Primitives. Often it is
necessary for the user to perform disk I/0 operations
directly without using any of the normal file structure
features of Altair BASIC. To allow this, two special
functions have been provided. These are the DSKI$ function
and the DSKOS statement. First we will give examples of how
to perform simple disk I/O commands using Altair BASIC
statements,

To Enable disk 0:
ouT 8,9

To Enable disk N:
ouT 8,N

TO step the disk head out one track:

WAIT 8,2,2:00T 9,2

January, 1977 Page 69

To step the disk head in one track:
WAIT 8,2,2:0UT 9,1
To test for track @:
IF (INP(8) AND 64)=0 THEN <statements or line number>

The above will execute the statements or branch to the line
number if the head is positioned at track @. This is the
outermost track on the disk.

To read sector Y (Y may be any expression, minimum sector
=@, maximum = 31):

AS$=DSKIS§ (Y)

The statement
DSKOS$ <string expression)>,<{sector expression>

writes the string expression on the sector specified. The
high order bit (most signifigant) of the first character
output will always be set to one when the string is written
on the sector, and thus will always be one when the sector
is read back in using DSKI$. A maximum of 137 characters
are written; giving a string whose 1length exceeds 137
characters will cause an ILLEGAL FUNCTION CALL error. If
the string argument is less than 137 characters in length,
the end of the string will be padded with zeros to make a
string of length 137.

January,

1977 Page 70

6. LISTS AND DIRECTORIES

6-1. Commands.

Commands direct Altair BASIC to arrange nemory and
input/output facilities, to 1list and edit programs and to
handle other housekeeping details in support of program
execution. Altair BASIC accepts commands after it prints
'0K' and is at command level. The table below 1lists the
commands in alphabetical order. The notation to the right
of the command name indicates the versions to which it
applies.

Command Version(s)
CLEAR All

Sets all program variables to zero.
CLEAR[<expression>] 8K, Extended, Disk

Same as CLEAR but sets string space to the value of the
expression. If no argument 1is given, string space will
remain unchanged. When Altair BASIC is loaded, string space
is set to 50 bytes in 8K and 203 bytes in extended.

CLOAD<string expression> 8K (cassette), Extended, Disk

Causes the program on cassette tape designated by the first
character of STRING expression> to be loaded into memory. A
NEW command is issued before the program is loaded.

CLOAD?<string expression> 8K(cassette), Extended, Disk

Compares the program in memory with the file on cassette
with the same name. If they are the same, BASIC prints OK.

If not, BASIC prints WO GOOD.
CLOAD*<array name> 8K (cassette), Disk

Loads the specified array from cassette tape. May be used
as a program statement

CONT 8K, Extended, Disk

Continues program execution after a Control/C has been typed
or a STOP or END statement has bean executed. Execution
resumes at the statement after the break occurred unless
input from the terminal was interrupted. In that case,

January, 1977 Page 71

execution resumes with the reprinting of the prompt (? or
prompt string). CONT 1is useful in debugging, especially
where an ‘'infinite loop' is suspected. An infinite loop is
a series of statements from which there 1is no escape.
Typing Control/C causes a break in execution and puts BASIC
in command level. Direct mode statements can then be used
to print intermediate values, change the values of
variables, etc. Execution can ke restarted by typing the
CONT command, or by executing a direct mode GOTO statement,
which causes execution to resume at the specified line
number.

In 4K and 8K Altair BASIC, execution cannot be
continued if a direct mode error has occured during the
break. 1In all versions, execution cannot continue if the
program was modified during the break.

CSAVE<string expression> 8K (cassette), Extended, Disk

Causes the program currently in memory to be saved on
cassette tape under the name specified by the first
character of <string expression>.

CSAVE*<array name> 8K (cassette), Disk

Causes the array named to be saved on cassette tape. May be
used as a program statement.

DELETE<line number> Extended, Disk

Deletes the line in the current program with the specified
number. If no such line exists, an ILLEGAL FUNCTION CALL
€error occurs.

DELETE-<line number> Extended, Disk

Deletes every 1line of the current program up to and
including the specified line. If there is no such line, an
ILLEGAL FUNCTION CALL error occurs.

DELETE<line number>-<line number> Extended, Disk

Deletes all lines of the current program from the first line
number to the second 1inclusive. ILLEGAL FUNCTION CALL
occurs if no line has the second number.

EDIT<line number> Extended, Disk

Allows editing of the line specified without affecting any

other lines. The EDIT command has a powerful set of
sub-commands which are discussed in detail in section 5-4.

January, 1977 Page 72

LIST All

‘Lists the program currently in memory starting with the
lowest numbered line. Listing is terminated either by the
end of the program or by typing Control/C.

LIST[<line number>] All

In 4K and 8K, prints the current program beginning at the
specified 1line. 1In Extended and Disk, prints the specified
line if it exists.

LIST[<line number>] [-<line number>] Extended, Disk
Allows several listing options.

1. 1f the second number is omitted, lists all 1lines with
numbers greater than or equal to the number specified.

2. 1f the first number is omitted, lists all 1lines from
the beginning of the program to the specified line,
inclusive.

3. If both line numbers are used, lists all lines from the
first number to the second, inclusive.

LLIST[<line number>][-<line number>] Extended, Disk

Same as list with the same options, except prints on the
line printer.

NEW All

Deletes the current program and clears all variables. Used
before entering a new program.

NULL<integer expression> 8K, Extended, Disk

Sets the number of nulls to bte printed at the end of each
line. For 18 character per second tape punches, <integer
expression> should be >=3. For 38 cps punches, it should be
>=3. When tapes are not being punched, <integer expression>
should be @ or 1 for Teletypes* and Teletype compatible
CRT's. It should be 2 or 3 for 38 cps hard copy printers.
The default value is @. In the 4K version, the same affect
may be achieved by patching location 46 octal to contain the
number of nulls plus 1.

* Teletype is a registered trademark of the Teletype
Corporation.

January, 1977 Page 73

RUN([<line number>] All

Starts execution of the program currently in memory at the
line specified. If the line number is omitted, execution
begins at the lowest line number. Line number specification
is not allowed in 4K.

6-2. Statements.

The following table of statements is listed in alpahabetical
order. The notation in the Version column designates the
versions to which each statement applies. 1In the table, X
and Y stand for any expressions allowed in the version under
consideration. I and J stand for expressions whose values
are truncated to integers. V and W are any variable names.
The format for a Altair BASIC line is as follows:

<nnnnn> <statement>[:<statement>...]

where nnnnn is the line number.

Name Format Version
CONSOLE CONSOLE <I>,<JI> Extended, Disk

Allows terminal console device to be switched. I is the I/0
port number which is the address of the low order channel of
the new I/0 board. J is the switch register setting (see
section 5-1 for the list of settings). @<=I,J<=255.

DATA DATA<list> All

Specifies data to be read by a READ statement. List
elements can be numbers or, except in 4K, strings. 4K
allows expressions. List elements are separated by commas.

DEF DEF FNV (<W>)=<X> 8K, Extended, Disk

Defines a wuser-defined function.. Function name 1is FN
followed by a legal variable name. Extended and Disk
versions allow user-defined string functions. Definitions
are restricted to one line (72 characters in 4K and 8K, 255
characters in extended versions).

DEFUSR DEFUSR[<digit>]=<X> Extended, Disk

January, 1977 Page 74

Defines starting address of assembly language subroutine.
Up to ten subroutines are allowed.

DIM DIM'(V)((I)[,J...])['ccol All

Allocates space for array variables. In 4K, conly one
dimension 1is allowed per variable. More than one variable
may be dimensioned by one DIM statement up to the 1limit of
the line. The value of each expression gives the maximum
subscript possible. The smallest subscript is #. Without a
DIM statement, an array is assumed to have maximum subscript
of 13 for eacn dimension referenced. For example, A(I,J) is
assumed to have 121 elements, from A(2,9) to A(l0,13) unless
otherwise dimensioned in a DIM statement.

END END All

Terminates execution of a program. Closes all files in the
Disk version.

ERASE ERASECV> [,<W>...] Extended, Disk

Eliminates the arrays specified. The arrays may be
redimensioned or the space made available for other uses.

ERROR ERRORKI> Extended, Disk

Porces error with code specified by the expression. Used
primarily for user-defined error codes.

FOR FORCV>=<X>TO<Y> [STEPKZ>] All

Allows repeated execution of the same statements. First
execution sets V=X. Execution proceeds normally until NEXT
is encountered. 2 is added to V, then, IF Z<®6 and V>=Y, or
if 2>0 and V<=Y, BASIC branches back to the statement after
FOR. Otherwise, execution continues with the statement
after NEXT.

GOTO GOTO<nnnnn> All

Unconditional branch to line number

GOSUB GOSUB<nnnnn> All

Unconditional branch to subroutine beginning at line nnnnn.
IF...GOTO IF <X> GOTO<nnnnn> 8K, Extended, Disk

Same as IF...THEN except GOTO can only be followed by a line
number and not another statement.

January, 1977 Page 75

IF...THEN [ELSE] IF<KX>THEN<X>[ELSE<Y>] all
or IF<X>THEN<statement)>[:statement...]
[ELSE<statement>[:statement...]

If value of X<>8, branches to line number or statement after
TEEN. Otherwise, branches to the line number or
statement(s) after ELSE. If ELSE is omitted, and the value
of X=0, execution proceeds at the line after the IF...THEN.
In 4K, X can only be a numeric expression. The ELSE clause
is only allowed in Extended and Disk Altair BASIC.

INPUT INPUT<V> [, <W>...] aAll

Causes BASIC to request input from terminal. Values (or, in
4K, expressions) typed on the terminal are assigned to the
variables in the list,

LET LET <V>=<X> All

Assigns the value of the expression to the variable. The
word LET is optional.

LPRINT LPRINT X[,Y...] Extended, Disk

Same as PRINT, but prints on the line printer. Line feeds
within strings are ignored. A carriage return is printed
automatically after the 80th character on a line.

LPRINT USING LPRINT USING<string>;<list> Extended, Disk

Same as PRINT USING, but prints on the line printer. For a
detailed description, see section 5-5.

MIDS MIDS (<X$>,<I>[,<J>])=¥$ Extended, Disk

Part of the string X$ is replaced by ¥YS. Replacement starts
with the 1Ith character of X$ and proceeds until ¥$ is
exhausted, the end of X$ is reached or J characters have
been replaced, whichever comes first. If I is greater than
LEN(X$), an ILLEGAL FUNCTION CALL error results.

NEXT NEXT [<V>,<W>...] aAll

Last statement of a2 FOR loop. V is the variable of the most
recent loop, W of the next most recent and so on. Only one
variable is allowed in 4K. Except in 4K, NEXT without a
variable terminates the most recent FOR loop.

ON ERROR GOTO ON ERROR GOTO<line number> Extended, Disk

When an error occurs, branches to 1line specified. Sets
variable ERR to error code and ERL to line number where the

January, 1977 Page 76
error occured. See section 6-5 for a list of error codes.
ON ERROR GOTO @ (or without number) disables error trapping.
ON...GOTO ONKI>GOTO<list of line numbers> 8K, Ext., Disk
Branches to line whose number is Ith in the 1list, List
elements are separated by commas. If I=0 or > number of
elements in the list, execution continues at next statement.
If I<9 or >255, an error results.
ON...GOSUB ON <I> GOSUB <list> 8K, Extended, Disk

Same as ON...GOTO except 1list elements are initial 1line
nunbers of subroutines.

ouT QUT<I> ,<J> 8K, Extended, Disk
Sends byte J to port I. ©<=I,J<=2535.

POKE POKEKI> , <J> 8K, Extended, Disk
Stores byte J in memory location derived from I.
0<=J<=255;=-32768<I<65536. If I 1is negative, address is
65535+I, if I is positive, address=I.

PRINT PRINT<X> [,<¥>...] all

Causes values of expressions in the list to be printed on
the terminal. Spacing is determined by punctuation.

Punctuation Spacing - next printing begins:
’ at beginning of next 14 column zone
; immediately

’
other or none at beginning of next line

String literals may be printed if enclosed by (") marks.
String expressions may be printed in all but 4K.

PRINT USING PRINT USING<string>;<list> Extended, Disk

Prints the values of the expressions in the 1list edited
according to the string. Tne string is an expression which
represents the line to be printed. The 1list contains the
constants, variable names or expressions to be printed.
List entries are separated by punctuation as in the PRINT
statement. For a list of string characters and their

functions, see section 5-5.

READ READCV> [, <W> ...] all

Assigns values in DATA statements to variables. Values are
assigned in sequence starting with the first value in the

January, 1977 Page 77

first DATA statement.
REM REM[<remark>] All

Allows insertion of remarks. Not executed, bLut may be
branched into. In extended versions, remarks may be added
to the end of a line preceded by a single quotation mark

('),
RESTORE RESTORE All

Allows data from DATA statements to be reread. Next READ
statement after RESTORE begins with first data of first data
statement.

RESUME RESUME [<number>] Extended, Disk

Resumes program execution at the line specified after error
trapping routine. If number is omitted or zero, resumes at
statement where error occured. RESUME NEXT causes

resumption at the statement following the statement where
the error was made.
RETURN RETURN All

Terminates a subroutine. Branches to the statement after
the most recent GOSUB.

STOP STOP All

Stops program execution. BASIC enters command level and,
except in 4K, prints BREAK IN LINE nnnnn. Unlike END, STOP
does not close files.

SWAP SWAP <V> ,<wW> Extended, Disk

Exchanges values of the variables named. Variables must be
of the same type.

TROFF TROFF Extended, Disk

Turns off trace flag. The trace flag is turned on by TRON
(see below). NEW also turns off the trace flag.

TRON TRON Extended, Disk

Turns on trace flag. Prints number of each line in square
brackets as it is executed.

WAIT WAITCI> ,<I>[,<K>] 8K, Extended, Disk
Status of port I is XOR'd with K and AND'ed with J.

January, 1977 Page 78

Continued execution awaits non-zero result. K defaults to
. ©6<=I,J3,K<=255.

6-3. Intrinsic Functions.

Altair BASIC provides several commonly used algebraic
and string functions which may be called from any program
without further definition. If the functions are not
required for a program, they may be deleted when BASIC is
loaded to conserve memory space. The functions in the
following table are 1listed in alphabetical order. The
notation to the right of the Call Format is the versions in
which the function 1is available. As usual, X and Y stand
for expressions, I and J for integer expressions and X§ and
¥$ for string expressions.

Function Call Format Version

ABS ABS (X) All

Returns absolute value of expression X. ABS(X)=X if X>=g,
-X if X<49.

ASC ASC(X$) 8K, Extended, Disk

Returns the ASCII code of the first character of the string
X$. ASCII ccdes are in appendix A.

ATN ATN (X) 8K, Extended, Disk

Returns arctangent(X). Result is in radians in range =-pi/2
to pi/2.

The following functions are available in Extended and Disk:

CINT CINT(X) Converts X to integer.
CSNG CSNG(X) Converts X to single precision.
CDBL CDBL(X) Converts X to double precision.

If the argument is in the range -32768 to 32767, the
CINT (X)=INT(X). Otherwise, CINT will produce an OVERFLOW

error.
CHRS CHRS (I) 8K, Extended, Disk

Returns a string whose one element has ASCII code I. ASCII

January, 1977 Page 79

codes are in Appendix A.
Cos COS (X) 8K, Extended, Disk

Returns cos(X). X is in radians.

ERL Extended, Disk
Returns the number of the 1line in which the last error
occurred.

ERR Extended, Disk

Returns the error code of the last error.

ERR ERR(I) Disk

Returns parameters of disk errors. After a DISK I/0O ERROR,
ERR(O) returns number of the disk, ERR(1l) returns the track
number (8-76) , ERR(2) returns the sector number, ERR(3) and
ERR(4) return the 1low and high order 8 bits of the
cumulative count of disk errors respectively.

EXP EXP (X) 8K, Extended, Disk
Returns e to the power X. X must be <=87.3365.

FIX FIX(X) Extended, Disk

Returns the truncated integer part of X. FIX(X) is
equivalent to SGN(X)*INT(A3S(X)). The major difference
between FIX and INT is that FIX does not return the next
lower number for negative X.

FRE FRE (8) 8K, Extended, Disk

Returns number of bytes in memory not being used by BASIC.
If argument is a string, returns number of free bytes in
string space.

HEXS BEXS (X) Extended, Disk

Returns a string which represents the hexadecimal of the
decimal argument.

INP INP(I) 8K, Extended, Disk
Reads a byte from port I.
INSTR INSTR(([I,]1XS,YS) Extended, Disk

Searches for the first occurrence of string Y¥Y$S in X$ and

January, 1977 Page 80

returns the position. Optional offset I sets position for
starting the search. @<=I<=255. If I>LEN(XS), 1if X$ |is
null or if Y¥$ cannot be found, INSTR returns 9. If ¥$ is
null INSTR returns I or 1. Strings may be string variable
values, string expressions or string literals.

INT INT (X) All

Returns the largest integer <=X

LEFTS LEFTS (X$,1I) 8K, Extended, Disk
Returns leftmost I characters of string XS.

LEN LEN (X$) 8K, Extended, Disk

Returns length of string X$. Non-printing characters and
blanks are counted.

LOG LOG (X) 8K, Extended, Disk
Returns naturzl log of X. X>@
LPOS LPOS (X) Extended, Disk

Returns the current position of the line printer print head
within the 1line printer buffer. Does not necessarily give
the physical position of the print head. The expression X
must be given, but the value is ignored.

MIDS MIDS$ (X$,I[,J]) 8K, Extended, Disk

Without J, returns rightmost characters from X$ beginning
with the Ith character. If I>LEN(XS$), MIDS returns the null
string. ©@<I<255. With 3 arguments, returns a string of
length J of characters from X§ beginning with the Ith
character. If J is greater than the number of characters :in
X$ to the right of I, MIDS returns the rest of the string.
B8<=J<=255.

OCTS$ OCTS$ (X) 8K, Extended, Disk

Returns a string which represents the octal value of the
decimal argument.

RND RND (X) All

Returns a random number between @ and 1. X<@ starts a new
sequence of random numbers. X>9 gives the next random
number in the sequence. X=0 gives the last number returned.
In 8K, Extended and Disk, sequences started with the sane
negative number will be the sane.

Jauuary, 1977 Page 81

POS POS(I) 8K, Extended, Disk

Returns present column position of terminal's print head.
Leftmost position =4.

RIGHTS RIGHTS (X$,I) 8K, Extended, Disk

Returns rightmost I characters of string X$. If I=LEN(XS),
returns «S.

SGN SGN (X) All

If X>9, returns 1, if X=0 returns @, if X<@, returns -1.
For example, ON SGN(X)+2 GOTO 160,209,380 branches to 140
if X is negative, 200 if X is 0 and 308 if X is positive.
SIN SIN(X) All

Returns the sine of the value of X in radians.
COS (X)=SIN(X+3.14159/2).

SPACES SPACES (I) 8K, Extended, Disk

Returns a string of spaces of length I.

SPC SPC(I) 8K, Extended, Disk
Prints I blanks on terminal. @<=I<=255.

SQR SQR (X) All

Returns square root of X. X must be >=0

STRS STRS (X) 8K, Extended, Disk
Returns string representation of wvalue of X.

STRINGS STRINGS (I,J) Extended, Disk

Returns a string of length I whose characters all have ASCII
code J. See Appendix A for ASCII codes.

TAB TAB(I) All

Spaces to position I on the terminal, Space @ 1is the
leftmost space, 71 the rightmost. If the carriage is
already beyond space I, TAB has no effect. 8<¢<=I<=255. May
only be used in PRINT and LPRINT statements.

TAN TAN (X) All

Returns tangent(X). X is in radians.

January, 1977 Page 82

USR USR(X) ALl

Calls the user's machine language subroutine with argument
X.

VAL VAL (XS$) 8K, Extended, Disk

Returns numerical value of string X§. If first character of
X$ is not +-,&ora digit, VAL(X$)=0.

VARPTR VARPTR (V) Extended, Disk

Returns the address of the variable given as the argument.
If the variable has not been assigned a value during the
execution of the program, an ILLEGAL FUNCTION CALL error
will occur. The main wuse of the VARPTR function is to
obtain the address of variable or array so it may be passed
to an assembly language subrcutine. Arrays are usually
passed by specifying VARPTR(A([8]) so that the lowest
addressed element of the array is returned.

NOTE
’11l simple variables should be assigned values in a
program before calling VARPTR for any array.

Otherwise, allocation of a new simple variable will
cause the addresses of all arrays to charnge.

6~-4. Special Characters

Altair BASIC recognizes saveral characters in the ASCII
font as hnaving special functions in <carriage control,

editing and program interruption. Characters such as
Control/C, Control/5, etc. are tyred by holding down the
Control key and typing the designated letter. The special
characters in the table are 1listed in the order of the
versions to which thev apply, starting with those common to
all versions and ending with those that apply only to
extended versions.

Typed as Printed as

The following Special Characters are available in ALL
versions.

January, 1977 Page 83

Erases current line and executes carriage return.
(backarrow)

Erases last character typed. 1If there is no last character
types a carriage return.

_(underline)

same as backarrow.

Carriage Return

Returns print head or curser to beginning of the next line.
Control/C “C (in extended)

Interrupts execution of current program or 1list command.
Takes effect after execution of the current statement or
after listing the current line. BASIC goes to command level
and types OK. CONT command resumes execution. See section

Separates statements in a line.

The following special characters are available in 8K,
Extended and Disk versions only.

Control/O “0 (in extended)

Suppresses all output until an INPUT statement is
encountered, another Control/0O is typed, an error occurs or
BASIC returns to command levzl.

? ?
equivalent to PRINT statement.
Rubout see explanation

Deletes previous character on an input line. First Rubout
prints \ and the 1last character to be printed. Each
successive Rubout prints the next character to the left.
Typing a new character causes another \ and the new
character to be printed. All characters between the
backslashes are deleted.

January, 1977 Page 84

Control/U “U (in extended)

Same as @
Control/S

Causes program execution to pause until Control/Q or
Control/C is typed.

Control/Q

Causes execution to resume after Control/S. Control/S and
Control/Q have no effect if no program is being executed.

The following special characters are available in Extended
and Disk versions only.

Control/A

Allows use of the EDIT command on the line currently being
typed. Control/A is typed instead of Carriage Return. See
section 5-4.

Control/I 1 to 8 spaces

Tab character. Causes print head or curser to move to the
beginning of the next 8 column field. Fields begin at
columns 1, 9, 17, etc. The tab character 1is especially
useful for formatting lines broken with line feeds.

189<tab>FOR I=1 TO 10:<line feed>
<tab><tab>FOR J=1 TO 1l8:<line feed>
tab><tab><tab>aA(I,J)=0:<line feed>
<tab>NEXT J,I<carriage return>

lists as:
109 FOR I=1 TO 10:
FOR J=1 TO 13:
A(I,J)=0:
NEXT J,1I
Control/G bell

Rings terminal's bell
LINE FEED

Breaks a long line into shorter parts. The result is still
one BASIC line.

largary, 1977 Page 85

Denotes the number of the current 1line. May be used
wherever a line number is to be specified.

(.} (.1

Brackets are interchangable with parentheses as delimiters
for array subscripts.

Lower Case Input

Lower case alphabetic characters are always echoed as lower
case, but LIST, LLIST, PRINT and LPRINT will translate lower
case to upper casz if the lower case characters are not part
of string literals, REM statements or single quote (')
remarcks.

6~-5. Zrror Messages.

After an error occurs, BASIC returns to command level and
types OK. Variable wvalues and the program text remain
intact, but the program cannot be continued by the CONT
command. In 4K and 3K versions, all GOSUB and FCR context
is lost. The program may be continued by direct mode GOTO,
however. When an error occurs in a direct statement, no
lire number is printed. Format of error messages:

Direct Statement ?2XX ERROR
Indirect Statement ?2XX ERROR IN YYVYY

where XX is the error code and YYYYY is the 1line number
where the error occurred. The following are the possible
error codes and their meanings:

ERROR CODE EXTENDED ERROR MESSAGE NUMBER

The following error codes aoply in ALL versions.

BS SUBSCRIPT OUT OF RANGE 9

An attempt was made to reference an array element which |is
outside the dimensions of the array. 1In the 8K and larger
versions, this error can occur if the wrong number of
dimensions are used in an array reference. For example:

LET A(1,1,1)=2

January, 1977 Page 86

when A has alreadyv been dimensioned by DIM A(19,19)
DD REDIMENSIONED ARRAY 10

After an array was dimensioned, another dimension statement
for the same array was ancountered. This error often occurs
if an array has been given the default dimension of 13 and
later in the program a DIM statement is found for the same
array.

FC ILLEGAL FUNCTION CALL 5

The parameter passed to a math or string function was out of
range. FC errors can occur due to:

1. a negative array subscript (LET A(-1)=0)

2. an unreasonably large array subscript (>32767)
3. LOG with negative or zero argument

4. SQR with negative argument

5. A®B with A negative and B not an integer

6. a call to USR before the address of a machine language
subroutine has been entered.

7. calls to ®MIDS, LEFTS, RIGHATS, IUP, OUT, WAIT, PEEK,
POKE, TAB, SPC, STRINGS, SPACES, INSTR or CNM...GOTO with
an improper argument.

ID ILLEGAL DIRECT 12

INPUT and DEF are illegal in the direct mode. In extended
versions, however, INPUT is legal in direct.

NF NEXT WITHOUT FOR

The variable in a NEXT statement correspcnds to no
previously executed FOR statement.

oD OUT OF DATA 4

A READ statement was executed but 2ll of the DATA statements
in the program have already been read. The program tried to
read too much data or insufficient data was included in the

program.

January, 1977

OM oUT OF MEMORY 7

Program is too large, has too many variables, too many FOR
loops, to many GOSUBs or too complicated expressions. See

Appendix C.
ov OVERFLOW

The result of a calculation was too large to be represented
in Altair BASIC's number format. If an underflow occurs,
zero is given as the result and execution continues without
any error message being printed.

SN SYNTAX ERROR 3

Missing parenthesis in an expression, illegal character in a
line, incorrect punctuation, etc.

RG RETURN WITHOUT GOSUB 3

A RETURN statement was encountered before a previous GOSUB
statement was executed.

UL UNDEFINED LINE 8

The line reference in a GOTO, GOSUB, IF...THEN...ELSE or
DELETE was to a line which does not exist.

/0 DIVISION BY ZERO

Can occur with integer division and MOD as well as floating
point division. @ to a negative power also causes a
DIVISION BY ZERO error.

The following error messages apply to -
8K, Extended and Disk versions only

CN CAN'T CONTINUE 17

Attempt to continue a program when none exists, an error
occured, or after a modification was made to the program.

LS STRING TOO LONG 15

An attempt was made to create a string more than 255
characters long.

0s OUT OF STRING SPACE 14

String variables exceed amount of string space allocated for

Page 87

11

January, 1977 Page 88

them. Use the CLEAR command to allocate more string space
or use smaller strings or fewer string variables.

ST STRING FORMULA TOO COMPLEX 16

A string expression was too long or toc complex. Break it
into two or more shorter ones.

™ TYPE MISMATCH 13
The left hand side of an assignment statement was a numeric
variable and the right hand side was a string, or

vice-versa; or a function which expected a string argument
was given a numeric one or vice-versa.

UF UNDEFINED USER FUNCTION 18
Reference was made to a user defined function which had

never been defined.

The following error messages are available in
Extended and Disk versions only.

MISSING OPERAND 22

During evaluation of an expression, an operator was found
with no operand following it.

NO RESUME 20

BASIC entered an error trapping routine, but the program
ended before a RESUME statement was encountered.

RESUME WITHOUT ERROR 21

A RESUME statement was encountered, but no error trapping
routine had been entered.

UNPRINTABLE ERROR 19

An error condition exists for which there is no error
message available. Probably there 1is an ERROR statement
with an undefined error code.

LINE BUFFER OVERFLOW 23

An attempt was made to input a program or data 1line which
has too many characters to be held in the line buffer.
Shorten the line or divide it into two or more parts.

January, 1977

Disk Altair BASIC Error Messages

FIELD OVERFLOW

An attempt was made to allocate more than 128 characters of
string variables in a single FIELD statement.

INTERNAL ERROR

Internal error in Disk BASIC. Report conditions under which
error occurred and all relevant data to MITS software

department. This error can also be caused by certain kinds
of disk I/O errors.

BAD FILE NUMBER

An attempt was made to use a file number which specifies a
file that is not OPEN or that is greater than the number of
files entered during the Disk Altair BASIC initialization
dialog.

FILE NOT FOUND

Reference was made in a LOAD, KILL or OPEN statement to a
file which did not exist on the disk specified.

BAD FILE MODE 54

An attempt was made to perform a PRINT to a random file, to
OPEN a random file for sequential output, to perform a 2UT
or GET on a sequential file, to load a random file or to

execute an OPEN statement where the file mode is not I, O,
or R,

FILE ALREADY OPEN 55

A sequential output mode OPEN for a file was issued for a
file that was already OPEN and had never been CLOSEd or a
KILL statement was given for an OPEN file.

DISK NOT MOUNTED 56

An I/0 operation was issued for a file that was not MOUNTed.
DISK I/0 ERROR 57

An I/C error occured on disk X. A sector read (checksum)
error occurred eighteen (18) consecutive times.

SET TO NON-DISK STRING

Page 89

Sé

51

52

53

58

January,

1977 Page 90

An LSET or RSET was given for a string variable which had
not previously been mentioned in a FIELD statement.

DISK ALREADY MOUNTED 59

A MOUNT was issued for a DISK that was already MOUNTed but
never UNLOADed.

DISK FULL 60

All disk storage is exhausted on the disk. Delete some old
disk files and try again.

INPUT PAST END

An INPUT statement was executed after all the data in a file
had been INPUT. This will happen immediately if an INPUT is
executed for a null (empty) file. Use of the EOF function
to detect End Of File will avoid this error.

BAD RECORD NUMBER 62

In a PUT or GET statement, the record number is either
greater than the allowable maximum (2846) or equal to zero.

BAD FILE NAME 63
A file name of @ characters (null) or a file name whose
first bvte was 8 or 377 octal (255 decimal) or a file name

with more than 8 characters was used as an argument to LOAD,
SAVE, KILL or OPEN.

MODE-MISMATCH 64

Sequential OPEN for output was executed for a file that
already existed on the disk as a random (R) mode file, or

vice versa.
DIRECT STATEMENT IN FILE 65

A direct statement was encountered during a LOAD of a
program in ASCII format. The LOAD is terminated.

TOO MANY FILES

A SAVE or OPEN (O or R) was executed which would create a
new file on the disk, but all 255 directory entries were
already full. Delete some files and try again.

OUT OF RANDOM BLOCKS 67

61

66

January, 1977

An attempt was made to have more random files OPEN at once

than the number of random blocks that were allocated during
initialization by the response to the
"NUMBER OF RANDOM FILES?" question (see Appendix E).

FILE ALREADY EXISTS 68
The new file name svecified in a NAME.statement had the same
name as another file that already existed on the disk. Try
a different name.

FILE LINX ERRCR

During the reading of a file, a sector was read which did

not belong to the file.

6-6. Reserved Words.

Some words are reserved by the Altair BASIC interpreter for
use as statements, commands, operators, etc. and thus may
not be used for variable or function names. The reserved

words are listed below in order of the versions for which
they are reserved, starting with those reserved in all

versions and ending with those reserved only in Disk Altair
BASIC. Words reserved in larger versions may be wused in
smaller versions, although one may want to avoid all
reserved words in the interest of compatibility. In
addition to the words listed below, intrinsic function names
are reserved words in all versions in which they are
available.

RESERVED WORDS

Page 91

Words reserved in all versions.

CLEAR NEW
DATA NEXT
DIM PRINT
END READ
FOR REX
GOSUB RETURN
GOTO RUN
IF STOP
INPUT T0
LET TAB
LIST THEN
USR

Words reserved in 8K, Extended and Disk

Plus:

versions.

All the above

January,

1977

AND

CONT OR

DEF oguT

FN POKE

NOT SPC

NULL WAIT

Words reserved in Extended and Disk

AUTO LINE

CONSOLE kL LLIST

DEFDBL LPRINT

DEFINT MOD

DEFSNG RENUM

DEFSTR RESUME

DELETE SPACES

EDIT STRINGS

ELSE SWAP
TROFF

ERASE TRON

ERL VARPTR

ERR WIDTH

IMP XOR

INSTR

Words reserved in Disk.

CLOSE LSET

DSKIS MERGE

DSKO$ MOUNT

FIELD NAME

PILES OPEN

GET PUT

KILL RSET

LOAD UNLOAD

versions.

All the above plus:

Page 92

All the above plus:

January, 1977 Page 93

APPENDIX A

ASCII CHARACTER CODES
DECIMAL CHAR. DECIMAL CHAR. DECIMAL CEAR.
890 NUL 843 * 086 v
881 SOH B44 . 087 W
002 STX 845 - 0838 X
603 ETX 846 . 889 Y
004 EOT 047 / 890 3
'TE ENQ 048 8 991 (
8d6 ACK 849 1 992 \
8g7 BEL 850 2 893]
028 BS 651 3 694
809 BT 652 4 895 <
610 LF 853 5 896 '
11 vT 654 6 097 a
912 FF 855 7 098 b
613 CR 856 8 @99 c
014 SO @57 9 109 4
015 SI 658 : 161 e
816 DLE 859) 192 £
817 DCl 069 < 193 g
218 DC2 661 - 184 h
919 DC3 . 962 > 185 i
629 DC4 863 ? 186 3
921 NAK 664 e 187 k
822 SYN 865 A 148 1
923 ETB 866 B 199 m
924 CAN 867 c 119 n
825 EM 668 D 111)
326 SUB 869 E 112 P
027 ESCAPE | 078 F 113 q
028 FS 971 G 114 r
829 GS 672 g 115 s
830 RS 673 1 116 £
931 us 874 J 117 u
g32 SPACE 875 K 118 v
033 ! 876 L 119 w
634 . 877 M 129 x
835 : 878 N 121 y
936 $ 879 0 122 2
937 3 080 P 123 (
238 & 681 Q 124 |
939 ' 982 R 125
040 (083 S 126
041) | 284 i, L 127 DEL
042 * | 885 o f

LF=Line Feed FF=Fora Feed CR=Carriage Return DEL=Rubout

January, 1977 Page 94

Using ASCII codes =-- the CHARS function.

CHRS (X) returns a string whose one character is that
with ASCII code X. ASC(XS) converts the first character of
a string to its ASCII decimal value.

One of the most common uses of CHRS is to send a
special character to the user's terminal. The most often
used of these characters is the BEL (ASCII 7). Printing
this character will cause a bell to ring on some terminals
and a beep on many CRT's. This may be used as a preface to
an error message, as a novelty, or just to wake up the user
if he has fallen asleep. Example:

PRINT CHRS$(7);

Another major use of special characters is on those
CRT's that have cursor positioning and other sgecial
functions (such as turning on a hard copy printer). For
example, on most CRT's a form feed (CHRS$(12)) will cause the
screen to erase and the cursor to "home" or move to the
upper left corner.

Some CRT's give the wuser the capability of drawing
graphs and curves in a special point-plotter mode. This
feature may easily be taken advantage of through wuse of
Altair BASIC's CHRS function.

Page 99

APPENDIX C
SPACE AND SPEED HINTS

A. Space Allocation

The memory space required for a program depends, of
course, on the number and kind of elements in the program.
The following table contains information on the space required
for the various program elements.

Element Space Required

Variables
numeric integer 5 bytes
single precision 7 bytes in Extended and Disk
6 bytes in 4X and 8K
double precision 11 bytes
string 6 bytes

Arrays
integer (# of elements)* 2 + 6 +(# of dimensions)*2 bytes
single precision 4 6 " "
double precision 8 6 " "
string 3 6 " .
8K and 4K
strings and floating pt. 6 + 5 " v

Functions
intrinsic
user—defined bytes for the definition

Reserved Words

N = [o

byte each
bytes for ELSE and ' in Extended and Disk

Other Characters

1l byte each
Stack Space
active FOR
loop 17 bytes in Extended and Disk,

16 bytes in 4K and 8K
active GOSUB 5 bytes
parentheses 6 bytes each set
temporary
result 12 bytes in Extended and Disk
10 bytes in 4K and 8K

byte for the call (2 bytes in Extended and Disk)

Page 100
BASIC itself takes about 3.4K in the 4K version, 6.2K in
8K, 14.6K in Extended and 17 K in Disk.

B. Space Hints

The space required to run a program may be significantly
reduced without affecting execution by following a few of the
following hints:

1. Use multiple statements per line. Each line has a 5 byte
overhead for the 1line number, etc., so the fewer lines
there are, the less storage is required.

2. Delete unnecessary spaces. Instead of writing

10 PRINT X, ¥, 2
use
18 PRINTX,Y,Z

3. Delete REM statements to save 1 byte for REM and 1 byte
for each character of the remark.

4. Use variables instead of constants, expecially when the
same value is used several times. For example, using the
constant 3.14159 ten times in a program uses 40 bytes more
space than assigning

190 P=3.14159

once and using P ten times.

5. Using END as the last statement of a program is not
necessary and takes one extra byte.

6. Reuse unneeded variables instead of defining new
variables.

7. Use subroutines instead of writing the same code several
times.

8. Use the smallest version of BASIC that will run the
program.

9. Use the zero elements of arrays. Remember the array
dimensioned by

106 DIM A(l109)

has eleven elements, A(@) through A(1l0).

10.

Page 101

In Extended and Disk, wuse integer variables wherever
possible.

Speed Hints

Deleting spaces and REM statements gives a small but
significant decrease in execution time.

Variables are set up in a table in the order of their
first appearance in the program. Later in the program,
BASIC searches the table for the variable at each
reference. Variables at the head of the table take less
time to search for than those at the end. Therefore,
reuse variable names and keep the list of variables as
short as possible.

In 8K, Extended and Disk wuse NEXT without the index
variable.

8K, Extended and Disk have faster floating point
arithmetic than 4K. If space is not a limitation, use the
larger versions.

The math functions in BK, Extended and Disk are faster
than those in 4K.

In the 4K and 8K versions, use variables instead of
constants, especially in FOR 1loops and other code that
must be executed repeatedly.

In Extended and Disk, use integer variables wherever
possible.

String variables set up a descriptor which contains the
length of the string and a pointer to the first memory
location of the string. As strings are manipulated,
string space fills up with intermediate results and
extraneous material as well as the desired string
information. When this happens, BASIC's *“garbage
collection” routine clears out the unwanted material. The
frequency of gargbage collection is inversely proportional
to the amount of string space. The more string space
there 1is, the longer it takes to fill with garbage. The
time garbage collection takes 1is prcportional to the
square of the number of string variables. Therefore, to
minimize garbage collection time, make string space as
largge as possible and use as few string variables as
possible.

Page 102

APPENDIX D
MATHEMATICAL FUNCTIONS

1. Derived Functions.

The following functions, while not intrinsic to ALTAIR BASIC,
can be calculated using the existing BASIC functions:

Function: BASIC equivalent:

SECANT SEC(X) = 1/CO0S (X)

COSECANT CSC(X) = 1/SIN (X)

COTANGENT COT (X) = 1/TAN(X)

INVERSE SINE ARCSIN(X) = ATN(X/SQR(-X*X+1))

INVERSE COSINE ARCCOS (X) = —-ATN X(X/SQR(-X*X+1))
+1.5708

INVERSE SECANT ARCSEC(X) = ATN (XSQR(X*X~1))
+SGN (SGN (X)-1)*1.5708
ARCCSC (X) = ATN(1/SQR(X*X-1))

+(SGN (X)-1)*1.5708

INVERSE COSECANT

INVERSE COTANGENT ARCCOT (X) = ATN(X)+1.5708
HYPERBOLIC SINE SINH(X) = (EXP(X)-EXP(-X))/2
HYPERBOLIC COSINE COSH (X) = (EXP(X)+EXP(-X))/2
HYPERBOLIC TANGENT TANH (X) = EXP(-X)/EXP (X)+EXP (-X))
*2+]
HYPERBOLIC SECANT SECH(X) = 2/(EXP (X)+EXP (=X))
HYPERBOLIC COSECANT CSCH (X) = 2/(EXP(X)-EXP (-X))
HYPERBOLIC COTANGENT COTH(X) = EXP(-X)/(EXP (X)—-EXP (-X))
*241

INVERSE HYPERBOLIC
SINE

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

INVERSE HYPERBOLIC
SECANT

INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

ARCSINH (X)
ARCCOSH (X)
ARCTANH (X)
ARCSECH (X)

ARCCSCH (X)

LOG (X+SQR (X*X+1))

fl

LOG (X+SQR (X*X+~1))

LOG((1+X)/(1-X))/2

LOG((SQR (-X*X+1)+1) /X)

LOG (.(SGN (X) *

SQR(X*X+1)+1) /X

ARCCOTH (X)

2. Simulated Math Functions.

= LOG((X+1)/(X-1))/2

The following subroutines are intended for 4K BASIC users who

want to use the
BASIC.

transcendental functions not built into 4K
The corresponding .routines for these functions in the

Page 103

8K version are much faster and more accurate. The REM
statements in these subroutines are given for documentation
purposes only, and should not be typed in because they take up
a large amount of memory. The following are the subroutine
calls and their 8K eguivalents:

8K EQUIVALENT 4K SUBROUTINE CALL
P9=X97Y9 GOSUB 60030
L9=LOG (X9) GOSUB 60890
E9=EXP (X9) GOSUB 60160
C9=COS (X9) GOSUB 60240
T9=TAN (X9) GOSUB 60280
A9=ATN (X9) GOSUB 60310

The unneeded subroutines should not be typed in. Please note
which wvariables are used by each subroutine. Also note that
TAN and COS require that the SIN function be retained when
BASIC is loaded and initialized.

60000 REM EXPONENTIATION: P9=X97Y9

60010 REM NEED: EXP, LOG

60020 REM VARIABLES USED: A9,B9,C9,E9,L9,P9,X9,Y9

60030 REM P9 =1 : E9=0 : IF Y9=0 THEN RETURN

60040 IF X9<@ THEN IF INT(Y9)=Y9 THEN P9=1-2*Y9+4*INT (Y9/2)
: X9=-X9

600850 IF X9<>0 THEN GOSUB 60690 : X9=Y9*L9 : GOSUB 60160

60060 P9=P9*E9 : RETURN

60070 REM NATURAL LOGARITHM: L9=LOG (X9)

60080 REM VARIABLES USED: A9,B9,C9,E9,L9,X9

60090 E9=0 : IF X9<=0 THEN PRINT “LOG FC ERROR"; : STOP

60180 A9=1: B9=2: C9=.5: REM THIS WILL SPEED THE FOLLOWING

60110 IF X9>=A9 THEN X9=C9*X9 : E9=E9+A9 : GOTO 60100

60120 X9=(X9-.707107)/(X9+.7077187) : L9=X9*X9

60130 L9=(((.598979*L3+.961471)*L.9+2.88539) *X9+E9~,5)*
.693147

60135 RETURN

60140 REM EXPONENTIAL : E9=EXP (X9)

60150 REM VARIABLES USED: A9,E9,L9,X9

66160 L9=INT(1.4427*X9)+1 : IF L9<127 THEN 60180

60170 IF X9>@ THEN PRINT “EXP OV ERROR"; : STOP

60175 E9=@ : RETURN

60188 E9=.693147*L9~-X9 : A9=1.32988E-3-1.41316E~-4*E9

60190 A9=((A9*E9-8.30136E-3)*E9+4.16574E~2)*E9

60195 E9=((A9~.166665)*EY-1)*E9+]1 : A9=2

60197 IF L9<=0 THEN A9=.5 : L9=-L9 : IF L9=0 THEN RETURN

60200 FOR X9=1 TO L9 : E9=A9*E9 : NEXT X9 : RETURN

60210 REM COSINE: C9=COS (X9)

60220 REM N.B. SIN MUST BE RETAINED AT LOAD-TIME

60230 REM VARIABLES USED: C9,X9

602406 C9=SIN(X9+1.5708) : RETURN

60250 REM TANGENT: T9=TAN (X9)

60260
60270
60280
60230
60300
60310
68320

60330
60340

Page 104

REM NEEDS COS. (SIN MUST BE RETAINED AT LOAD-TIME)
REM VARIABLES USED: C9,T9,X9
GOSUB 60240 : T9=SIN(X9)/C9 : RETURN
REM ARCTANGENT : A9=ATN (X9)
REM VARIABLES USED: A9,B9,C9,T9.X9
T9=SGN (X9): X9=ABS(X9):C9=0: IF X>1 THEN C9-1: X9=1/X9
A9=X9*X9 : B9=((2.86623E~3*A9-1.61657E-2) *A9

+4.29096E-2) *A9
B9=((((B9~7.5289E~2)*A9+.186563) *A9-.1142089) *A9+.199936) *A9
A9=((B9-.333332)*A9+1)*X9 : IF C9=1 THEN A9=1.57088-A9

Page 109

APPENDIX G
CONVERTING BASIC PROGRAMS
NOT WRITTEN FOR THE ALTAIR COMPUTER

Though implementations of BASIC on different computers
are in many ways similar, there are some incompatibilities
between ALTAIR BASIC and the BASIC used on other computers.

1) Strings.

A number of BASICs require the length of strings to be
declared before they are used. All dimension statements of
this type should be removed from the program. In some of
these BASICs, a declaration of the form DIM AS$(I,J) declares a
string array of J elements each of which has a length I.
Convert DIM statements of this type to equivalent ones in
Altair BASIC: DIM A$(J). Altair BASIC uses " + " for string
concatenation, not " , * or " & ." ALTAIR BASIC uses LEFTS,
RIGHTS and MIDS$ to take substrings of strings. Some other
BASICs use AS(I) to access the Ith character of the string AS,
and A$(I,J) to take a substring of A$ from character position
I to character position J. Convert as follows:

OLD NEW
AS(I) MIDS$ (AS,I,1)
AS(I,J) MIDS (A$,I,J-I+1)

This assumes that the reference to a subscript of A$ is in an
expression or is on the right side of an assignment. If the
reference to AS$ is on the left hand side of an assignment, and
X$ is the string expression used to replace characters in AS,
convert as follows:

In 4K and 8K

OLD NEW

AS (I)=X$ AS=LEFTS (AS$,I~-1)+XS$+MIDS(AS,I+]1)
AS(I,J)=X$ AS=LEFTS (AS$,I-1)+X$+MIDS (AS,J+1)
Extended and Disk

OLD NEW

AS (I)=XS$ MIDS (AS,1,1)=X$

AS$(I,J)=X$ MIDS (AS,I,J-I1+1)=XS$

2) Multiple assignments.
Some BASICs allow statements of the form:

508 LET B=C=0@

Page 1190

This statement would set the variables B and C to zero. 1In 8K
Altair BASIC, this has an entirely different effect. All the
“ = " signs to the right of the first one would be interpreted
as logical comparison operators. This would set the variable
B to -1 if C equaled 0. If C did not equal 0, B would be set
to 0. The easiest way to convert statements like this one is
to rewrite them as follows.

500 C=8:B=C

3) Some BASICs use " \ " instead of “ : *“ to delimit multiple
statements on a 1line. Change each " \ “ to * : " in the
program.

4) Paper tapes punched by other BASICs may have no nulls at
the end of each line instead of the three per line recommended
for use with Altair BASIC. To get around this, try to use the
tape feed control on the Teletype to stop the tape from
reading as soon as Altair BASIC prints a carriage return at
the end of the line. Wait a moment, and then continue feeding
in the tave. When reading has finished, be sure to punch a
new tape in Altair BASIC's format.

A program for converting tapes to Altair BASIC's format
was published in MITS Computer Notes, November 1976, p. 25.

5) Programs which use the MAT functions available in some
BASICs will have to be rewritten using FOR...NEXT loops to
perform the appropriate operations.

ABS - - . L] L] L .
ACR interface . .
AND . . « « « o &
Array variable .
ASC & v « « o+ o« o
ASCII character code
ASCII Program files .

Assembly language and B
ATN « ¢« ¢ o o o o o

AUTO . . « « o o« &

. L] y. L . L] . L] L]

Backarrow .« « « « « o
Branch, conditiona .
Branch, unconditional
Branching« . .

Carriage Return
CDBL . &« « ¢ o« o o o o
Character, alphanumeric
CHRS v v v ¢ o o o o &
CINT . . .
CLEAR . .
CLOAD . .
CLOAD* . .
CLOAD? . .
CLOSE e
CLOSE, random files
Command Level . . .
Command, Definition
Commands List . .
CONSOQLE . .
Constants .
CONT
Control/A .
Control/C
Control/G .
Control/I .

Control/0 .

Control/Q .

Control/Ss .

Control/U .

Conversion from non-Alt

COS - . . L] L] . L] L] L] .

-
L] L] L] . . L]
L] - . L] L]
L] L] . . L[]

L] . L] . L] . . . L]

.

a

L]
L]
L]
L]
L]
-
.
.
.
Ll
.
.
-
-
-
-
-
*
.
L]
]
1

S

e o 4o & & = o s o

s

1

™M e o & ¢ ¢ & & o o & & » o

Page 115

79

187

18

15

79, 95
94

56

185

79

20

4, 83
79

79
79

e & o 8 o
-3

167
70,
108

708,
26,
70,

1e8

Ule o o o o ¢ o & o ¢ o & o o o o o o o =
[-]
w

CSAVE

Disk, enabling

Disk, stepping the head
Disk, testing for track 0

Division,integer
Double precision
DSKF . . . & & v ¢ ¢ o o
DSKI$ and DSKO$ primitives
DSKINI . . . ¢ . ¢« ¢ « o« &

CSAVE* [] - - L] . L] - - L] -
CSAVE* for arrays
CSNG L] - L] L] . L] L] L] L] L] -
CVD L] . - L] L] - L] L] L] L] -
CVI - - - - - L] L] - L] L] -
CVS & & & & ¢ ¢ o o o o
DATA . . 2@ o« o o o o o o =
DEF . ¢ ¢ ¢ ¢« o o o o o »
DEFDBL . ¢ ¢ ¢« ¢ ¢ « o o &
Definitions
DEFINT . . . ¢ ¢« ¢ o o o =
DEFSNG . ¢ . ¢ v ¢ o o o
DEFSTR .« & v o o s o o o &«
DEFUSR . « s 4 v e e & e
DEINT . « o s s s e = =
DELETE . . . +v v o o o o .«
Derived math functions . .
DIM - - L] L] - - - - - L] L]
Dimensions
Direct Mode « e e e e
Disk number
Disk operations

EDIT ¢« + « .
Edit, definition . . .
Editing, elementary pro
END
EOF L] . - L]
EQV
ERASE . . .
ERL . . .
ERR
Error codes
Error message format .
Error messages, definit

i

L]
-
[
-
-

¢ & o s @
* e e e e e s o G+

o
Error messages, disk
ERROR statement . .
Error trapping . . .
EXP
Expression, integer

Expressions, string

e 8 e 8
* ¢ & o o o e e e s e e o s N .

FIELD - [] L] - L] L] L] - L] L]
Fields, numeric
Fields, string

=

¢ s o o o o o s O e

1]

L] L[] L] . . L] . L . . L] . . [. L] . .] . . L] [] [)

[I] * o e

L] L] L] . L] - . L] [] [] L] . . . L] . L] . L] . . [] L] []

® & * & s s e e s e 8 s s e s [N e

108

32, 74
74

74

74

72

74
79
79

File name . . . ¢ ¢ o« « o o »
FILES command . . « o« « o« o &«
FIx . . - L] - L] - L] L] L] L] . L]
Floating Point Accumulator (FAC

) 106

Floating Point Accumulator, FAC 40
FOR . ¢ ¢ ¢ ¢ ¢ o o o o o« o« « 22, 75
FRCINT . &« &+ o o« « o ¢ s « o« » 41

FRE - - - L] - L] L] - - - L] [] [] sﬂ
Functions . . . ¢« ¢« &+ « « « « 29
Functicns, derived 1082
Functions, extended 49
Functions, intrinsic 29
Functions, simulated (for 4k) 192
Functions, string 32
Functions, user-definea . . . 29

GET - L] L] - L] L] - - L] L] - L] 63
GOSUB . & & o ¢ o o o o o« o « 23
GOSUM . & ¢ ¢ ¢ o o o« o« « o« « 75
GOTO . & & ¢ &« « o o o« o « o« « 28, 75
HEXS . . & ¢ ¢ ¢ ¢ ¢ &« « « « . 880
Hexadecimal constants 13
IF...GOTO . . .+« ¢« ¢ ¢« ¢ o« « « 21, 75
IF...THEN e« + o « o 28, 75
IF...THEN...ELSE 21, 75
ILLEGAL FUNCTION CALL error . 30, 35
ILLFUN . ¢ ¢ ¢ ¢ ¢ o o o « « « 1865
IMP - L] [] [] - - - . - . L] L] [] 18
Indirect Mode . . . ¢« +« « « « 5

INP . . ¢ ¢ @ 4« o o o o« o« « « 28, 80
INPUT . . . & ¢ ¢ o« o« o« « « « 24, 32,
INPUT, disk . . « « +« « « « « 58
INSTR . &+ &« o o ¢ « o« « o« « « 80

INT . & ¢ v @ ¢« o o o« o« « « « 80
Integer expression ¢« + &« & 5
Intellec systems, Alta r BASIC on. 112
KILL &« &+ 4 ¢« « o o s o s« o« o« &« 57
LEFTS . [] . . . []] . 85
LEN - . - - L] . L] L] [] L] L] . L] Be
LET . ¢ ¢ ¢ 4« ¢ o ¢ o« o o« o« &« 19, 75
Line . . . ¢« & ¢« ¢ ¢ ¢« ¢+ « « « 6

LINE FEED . . ¢ ¢ ¢ « o« « « « B85
LINE INPUT . * & = o o s o = 33, 75
LINE INPUT, dlsk s e e o o « o 61
Line LENGTH . . .+ ¢ ¢« « o« & « 7

Line Number 6

LIST © ¢ « ¢ ¢ ¢ o o o o « o« o 172
Lists and Directories 70
LLIST . ¢ & ¢ ¢ o o« o o« o« o« o 72
LOAD . . . & ¢ ¢ ¢ « s o« « o« &« 55
Loading programs from paper tape 72

75

Loc e ® © o o o @
LOF .« ¢ o o o o o
LOG . ¢« « « o o &
Loops I
Lower case iqput .
LPOS . ¢« « « o «
LPRINT . . « « o«
LPRINT USING . . .
LSET . « « « ¢ «
MAKINT . . . « « .
MERGE« =«
MIDS « .«
MIDS$ function . .
MKDS . . « « « « &
MKIS « « .
MKSS . « « « ¢« « &
MOD operator . . .
MOUNT « .
NAME - L] . L] L] - -
NEW« .
NEW in disk . . .
NEXT . . . « « «
NEXT e e e e e
NOT L] L] - L] L] L] L]
N ULL - . - [] L] L] .
OCTS & « ¢« ¢« o o« &
Octal constants

ON ERROR GOTO . .
ON...GOSUB
ON...gosub
ON...GOTO
ON...goto
OPEN . . . « « «
OPEN, random files
Operators . .« .

OPERATORS,
Operators,
Operators,
Operators,
Operators, str
OR . « . .« « &
out

log

OUT OF STRING SPACE error

PEEK
POKE L] L] L] L] L]
POS
Precedence, ta
PRINT
PRINT USING .
PRINT, disk .
Prompt string

ical

ing

L]

.
.
-

L] L] . L] L] L] L] L] . L] L] L] . . . L] L] L]

bie oé

. L] . . L] L] . . .

L] L] L] L] L] L] . L] . L] . . L] . . L] . . L] L . L] L . L]

extended and d

precedence of
relational

L] L L] . L] L] L]

L] L] L] L] L] L] L] . L] . L] L L] L] L] L] L] L]

e & & & 8 jdets & & @ & & & &

L[] . [] [] []] . L] [] . . L] . [] . [] . L]

L] L] . L] . L] .

L] . L] L] . L]] L] [] [] L] L] L] L] L] L] . .

L] . L] L] L] . . L] L [] L] L] L] L] L] L] . L] . L] . L] L] L] L]

. L] . L L] L] L]

76

76

puT L] L] - L L . L] L] . L]

Random buffer .
Random File I/0
Random files .
READ
Remarks, REM ..
RENUM
Reserved Words
Reserved words
RESTORE . . .
RESUME . . .
RESUME NEXT .
RETURN
RIGHTS
RND
RSET
RSTLESS version
RUBOUT
RUN
RUN, disk file

e« o [l o ¢ o s ¢ 2 o s o & s s o
e & & & & & e & & & 8 5 P " 2 s &

L L] L] L] . . L] - . L] L] . L] [] L] [] L] L] .

. L] L] L L L] L] L] . L]

SAVE . .+ ¢ ¢ o ¢ o « o &
Saving programs on paper
Scientific notation . .
Sequential File I/0 . .
Sequential mode
SGN . . - - L] L] L] - . L]
Simulate math functions
SIN - K . . .
Single precision .
Space allocation
Space hints . . .
SPACES
SPC . . .« « « .+ .
Special Characters
Speed hints
SQR . . . ¢+ 4 . .
Statement, Definition
Statements
Statements, extended
STOP . . ¢« « « « &
STRs -
String constant .
String expression
String functions
String Literal .
String variable
STRINGS
Strings
Subroutines . . .
Subroutines, machin
SWAP . ¢ ¢ ¢ ¢ o &

. . L] [] . . L] L] L] L] L[]

. . & &

el

TAB .« o ¢ o o o o o o &

L] L] L] L] L] L] L] L] - L] [] L] [] L] L]

e & o & & & & 8 & 8 & (T

L] L] . L] . o . L] . L] L] . . L] .

1)

.ln..l..llllll.l..ll.‘l.......'u.

®

. - L] . L] L] L] L] L] L] [] L] . - L] [] [] . L]

L] L] L] L] L] . L] . [] L] L] L] L] L] L] L] L] L] L] L] L] . L] . L] . . .

TAN ¢ v v ¢ ¢ ¢ o o o @ O - 7
TROFF L] . L] L] L] . L] . . L] L] - [3 . [] [] . L] L] L] . L] L] 34’78
TRON 4 & o o o o o o o o o o o o s s o s o s o0+ 34,78
TYPE MISMATCH €rror « « o o o o o o o o o o o o o o 38
Type of constants « « « ¢ ¢ ¢ ¢ ¢ o o o o o o o o s 12
Type of variables .+ « o ¢« ¢ o ¢ o o ¢ s o s s o o « 14
Type, definition .+ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o & 5
UNDEFINED USER FUNCTION error . « « ¢ « v « o « « « 38
UNLOAD . . L] L] L] L] L] . L] . L] L . . L] [] L] [] . . . L] L] 53
UNPRINTABLE ERROR & ¢ & ¢ o o o o o o o o o o o o @ 39
User-defined function . « « o « o ¢ o ¢ o o o » « « 29
USR & ¢ ¢ v v v o e s e s s s e s e e e e e e . 82,185
USRLOC & o « o o « « o o o o s o s o o o o o o o o o« 1085
VAL & 4 4 ¢ 6 o ¢ o o o o o s o o 0 o s s o 000 82
Variable types « ¢« v ¢ o ¢ ¢ o o o ¢ o ¢ ¢ o o o o » 14
Variables .+ ¢« o ¢ ¢ ¢ o ¢ o o o o o o o ¢ s s o o @ 13
VARPTR & &« 4 ¢ & o o o o o o s s o s s o s s s s o o 82

HAIT * & & & & & & & & 8 & 8 & & & 8 e s s s s 27’ 78
wIDTH * & & & &8 & & & & " & * & & & B & & 8 s s 35

XOR . L] L] L L] . L] L] L] L] - . . 18

[’] L] L] L] e e o & 8 & & & 3 L] L] . . L] L] 85
. L] . . L] L] L] . L] . . . L] L . L] L] L] . . 85
. . L] . L] L] . . L] L] L] . L] . L] L] . L] L] 83
. e & 8 & @ & & & & s = L] L] L . L] - 83
e e e i e et e e T -
T - X

Mostek reserves the right to make changes in specifications at any time and without
notice. The information furnished by Mostek in this publication is believed to be
accurate and reliable. However, no responsibility is assumed by Mostek for its use;
nor for any infringement of patents or other rights of third parties resulting from
its use. No license is granted under any patents or patent rights of Mostek.

Mostek reserves the right to make changes in specifications at any time and without notice. The information furnished by Mostek in this publication is believed to be accurate and ' .
reliable. However, no responsibility is assumed by Mostek for its use; nor for any infringements of patents or other rights of third parties resulting from its use. No license is

MOSTEK.
Z80-F8 sz

3870 paaese
applications.

1215 W. Crosby Rd. * Carrollton, Texas 75006 * 214/242-0444

In Europe, Contact: MOSTEK Brussels
150 Chaussee de la Hulpe, B1170, Befgium;
Telephone: (32) 02/660-2568/4713

granted under any patents or patent rights of Mostek.

PRINTED IN USA February 1979
Publication No. MK79623

Copyright 1979 by Mostek Corpofation
All rights reserved

o SR i

